BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31955508)

  • 1. Hormone-mediated modulation of the electromotor CPG in pulse-type weakly electric fish. Commonalities and differences across species.
    Borde M; Quintana L; Comas V; Silva A
    Dev Neurobiol; 2020 Jan; 80(1-2):70-80. PubMed ID: 31955508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamatergic control of a pattern-generating central nucleus in a gymnotiform fish.
    Comas V; Borde M
    J Neurophysiol; 2021 Jun; 125(6):2339-2355. PubMed ID: 33978492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive mechanisms underlie the emission of social electric signals of submission in
    Comas V; Langevin K; Silva A; Borde M
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish.
    Perrone R; Migliaro A; Comas V; Quintana L; Borde M; Silva A
    J Physiol Paris; 2014; 108(2-3):203-12. PubMed ID: 25125289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential output pathways for agonistic-like responses resulting from the GABA(A) blockade of the torus semicircularis dorsalis in weakly electric fish, Gymnotus carapo.
    Teixeira Duarte T; Hoffmann A; de Souza Fim Pereira A; Aparecida Lopes Corrêa S
    Brain Res; 2006 May; 1092(1):117-28. PubMed ID: 16696952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasotocin increases dominance in the weakly electric fish Brachyhypopomus gauderio.
    Perrone R; Silva A
    J Physiol Paris; 2016 Oct; 110(3 Pt A):119-126. PubMed ID: 27940222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio.
    Pouso P; Radmilovich M; Silva A
    Tissue Cell; 2017 Apr; 49(2 Pt B):257-269. PubMed ID: 28242105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences.
    Perrone R; Batista G; Lorenzo D; Macadar O; Silva A
    Front Behav Neurosci; 2010; 4():. PubMed ID: 20802858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.
    Curti S; Falconi A; Morales FR; Borde M
    J Neurosci; 1999 Oct; 19(20):9133-40. PubMed ID: 10516331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testosterone and 11-ketotestosterone have different regulatory effects on electric communication signals of male Brachyhypopomus gauderio.
    Goldina A; Gavassa S; Stoddard PK
    Horm Behav; 2011 Jul; 60(2):139-47. PubMed ID: 21596047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio.
    Vazquez JI; Gascue V; Quintana L; Migliaro A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jan; 210(1):7-18. PubMed ID: 37002418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromodulation of the agonistic behavior in two species of weakly electric fish that display different types of aggression.
    Silva AC; Perrone R; Zubizarreta L; Batista G; Stoddard PK
    J Exp Biol; 2013 Jul; 216(Pt 13):2412-20. PubMed ID: 23761466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental and hormonal influences upon EOD waveform in gymnotiform pulse fish.
    Silva A; Quintana L; Ardanaz JL; Macadar O
    J Physiol Paris; 2002; 96(5-6):473-84. PubMed ID: 14692495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio.
    Pouso P; Quintana L; López GC; Somoza GM; Silva AC; Trudeau VL
    Gen Comp Endocrinol; 2015 Oct; 222():158-66. PubMed ID: 26141148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocommunication in pulse Gymnotiformes: the role of electric organ discharge (EOD) time course in species identification.
    Waddell JC; Caputi AA
    J Exp Biol; 2020 Aug; 223(Pt 16):. PubMed ID: 32748795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin Regulates Daily Variations in Electric Behavior Arousal in Two Species of Weakly Electric Fish with Different Social Structures.
    Migliaro A; Silva A
    Brain Behav Evol; 2016; 87(4):232-41. PubMed ID: 27215902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waveform discrimination in a pair of pulse-generating electric fishes.
    Waddell JC; Caputi AA
    J Fish Biol; 2020 Apr; 96(4):1065-1071. PubMed ID: 32077109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.