These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31955754)
1. Characterization of electrostatic interactions and complex formation of ɣ-poly-glutamic acid (PGA) and ɛ-poly-l-lysine (PLL) in aqueous solutions. Muriel Mundo JL; Liu J; Tan Y; Zhou H; Zhang Z; McClements DJ Food Res Int; 2020 Feb; 128():108781. PubMed ID: 31955754 [TBL] [Abstract][Full Text] [Related]
2. Stabilization of soybean oil-in-water emulsions using polypeptide multilayers: Cationic polylysine and anionic polyglutamic acid. Muriel Mundo JL; Zhou H; Tan Y; Liu J; McClements DJ Food Res Int; 2020 Nov; 137():109304. PubMed ID: 33233043 [TBL] [Abstract][Full Text] [Related]
3. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin. Lopez-Pena CL; McClements DJ Food Chem; 2014 Jun; 153():9-14. PubMed ID: 24491693 [TBL] [Abstract][Full Text] [Related]
4. In vitro interaction of polyelectrolyte nanocapsules with model cells. Łukasiewicz S; Szczepanowicz K Langmuir; 2014 Feb; 30(4):1100-7. PubMed ID: 24410319 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions. Akagi T; Watanabe K; Kim H; Akashi M Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513 [TBL] [Abstract][Full Text] [Related]
6. Influence of temperature and salt on coacervation in an aqueous mixture of poly-L-lysine (PLL) and poly-(sodium styrene sulfonate) (PSSNa). Naassaoui I; Aschi A Eur Biophys J; 2021 Sep; 50(6):877-887. PubMed ID: 34047804 [TBL] [Abstract][Full Text] [Related]
8. Reinvestigation on the buildup mechanism of alternate multilayers consisting of poly(L-glutamic acid) and poly(L-, D-, and DL-lysines). Itoh K; Tokumi S; Kimura T; Nagase A Langmuir; 2008 Dec; 24(23):13426-33. PubMed ID: 18973312 [TBL] [Abstract][Full Text] [Related]
9. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting. Szczepanowicz K; Bzowska M; Kruk T; Karabasz A; Bereta J; Warszynski P Colloids Surf B Biointerfaces; 2016 Jul; 143():463-471. PubMed ID: 27037784 [TBL] [Abstract][Full Text] [Related]
10. Quaternary complexes modified from pDNA and poly-l-lysine complexes to enhance pH-buffering effect and suppress cytotoxicity. Kodama Y; Yatsugi Y; Kitahara T; Kurosaki T; Egashira K; Nakashima M; Muro T; Nakagawa H; Higuchi N; Nakamura T; Sasaki H J Pharm Sci; 2015 Apr; 104(4):1470-7. PubMed ID: 25652194 [TBL] [Abstract][Full Text] [Related]
11. Interactions of a cationic antimicrobial (ε-polylysine) with an anionic biopolymer (pectin): an isothermal titration calorimetry, microelectrophoresis, and turbidity study. Chang Y; McLandsborough L; McClements DJ J Agric Food Chem; 2011 May; 59(10):5579-88. PubMed ID: 21462961 [TBL] [Abstract][Full Text] [Related]
12. Development and characterization of layer-by-layer coated liposomes with poly(L-lysine) and poly(L-glutamic acid) to increase their resistance in biological media. Hermal F; Frisch B; Specht A; Bourel-Bonnet L; Heurtault B Int J Pharm; 2020 Aug; 586():119568. PubMed ID: 32592900 [TBL] [Abstract][Full Text] [Related]
13. Polyelectrolyte complex nanofibers from poly(γ-glutamic acid) and fluorescent chitosan oligomer. Kim HC; Kim MH; Park WH Int J Biol Macromol; 2018 Oct; 118(Pt A):238-243. PubMed ID: 29890247 [TBL] [Abstract][Full Text] [Related]