These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31956651)

  • 1. Predicting Drug Release From Degradable Hydrogels Using Fluorescence Correlation Spectroscopy and Mathematical Modeling.
    Sheth S; Barnard E; Hyatt B; Rathinam M; Zustiak SP
    Front Bioeng Biotechnol; 2019; 7():410. PubMed ID: 31956651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Lattice-Based Modeling of Macromolecule Release from Degradable Hydrogel.
    Jahanmir G; Lau CML; Yu Y; Chau Y
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4402-4412. PubMed ID: 36057096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute diffusion and partitioning in multi-arm poly(ethylene glycol) hydrogels.
    Richbourg NR; Peppas NA
    J Mater Chem B; 2023 Jan; 11(2):377-388. PubMed ID: 36511476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute diffusion and interactions in cross-linked poly(ethylene glycol) hydrogels studied by Fluorescence Correlation Spectroscopy.
    Zustiak SP; Boukari H; Leach JB
    Soft Matter; 2010 Aug; 6(15):. PubMed ID: 24282439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multiscale Model for Solute Diffusion in Hydrogels.
    Axpe E; Chan D; Offeddu GS; Chang Y; Merida D; Hernandez HL; Appel EA
    Macromolecules; 2019 Sep; 52(18):6889-6897. PubMed ID: 31579160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels.
    Hiemstra C; Zhong Z; van Steenbergen MJ; Hennink WE; Feijen J
    J Control Release; 2007 Sep; 122(1):71-8. PubMed ID: 17658651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolytically degradable thiol-ene hydrogels for protein release.
    Rehmann MS; Garibian AC; Kloxin AM
    Macromol Symp; 2013 Jul; 329(1):58-65. PubMed ID: 25309103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation-Dependent Protein Release from Enzyme Sensitive Injectable Glycol Chitosan Hydrogel.
    Gohil SV; Padmanabhan A; Kan HM; Khanal M; Nair LS
    Tissue Eng Part A; 2021 Jul; 27(13-14):867-880. PubMed ID: 32940146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of Bulk Degradation and Molecular Release from Enzymatically Degradable Polymeric Hydrogels.
    Wu N; Schultz KM
    Biomacromolecules; 2021 Nov; 22(11):4489-4500. PubMed ID: 34516089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2008 May; 128(1):71-9. PubMed ID: 18433910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of hydrophilic-hydrophobic hydrogels and its effect on albumin release.
    Zhan Y; Chu CC
    J Mater Sci Mater Med; 2002 Jul; 13(7):667-76. PubMed ID: 15348576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
    Wang Y; Zhang S; Benoit DSW
    J Control Release; 2018 Oct; 287():58-66. PubMed ID: 30077736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels.
    Zustiak SP; Leach JB
    Biotechnol Bioeng; 2011 Jan; 108(1):197-206. PubMed ID: 20803477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailor-made polymers for local drug delivery: release of macromolecular model drugs from biodegradable hydrogels based on poly(ethylene oxide).
    Kelner A; Schacht EH
    J Control Release; 2005 Jan; 101(1-3):13-20. PubMed ID: 15588890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectively Cross-Linked Tetra-PEG Hydrogels Provide Control over Mechanical Strength with Minimal Impact on Diffusivity.
    Lust ST; Hoogland D; Norman MDA; Kerins C; Omar J; Jowett GM; Yu TTL; Yan Z; Xu JZ; Marciano D; da Silva RMP; Dreiss CA; Lamata P; Shipley RJ; Gentleman E
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4293-4304. PubMed ID: 34151570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable multi-phase protein release from in-situ hydrolyzable hydrogel.
    Lau CML; Jahanmir G; Yu Y; Chau Y
    J Control Release; 2021 Jul; 335():75-85. PubMed ID: 33971140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Diffusivity Stochastic Model for Macromolecule Release from a Hydrogel.
    Jahanmir G; Lau CML; Abdekhodaie MJ; Chau Y
    ACS Appl Bio Mater; 2020 Jul; 3(7):4208-4219. PubMed ID: 35025422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison study on the release kinetics and mechanism of bovine serum albumin and nanoencapsulated albumin from hydrogel networks.
    Chen K; Chen X; Han X; Fu Y
    Int J Biol Macromol; 2020 Nov; 163():1291-1300. PubMed ID: 32668303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics.
    Shubin AD; Felong TJ; Schutrum BE; Joe DSL; Ovitt CE; Benoit DSW
    Acta Biomater; 2017 Mar; 50():437-449. PubMed ID: 28039063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the release of proteins from degrading crosslinked dextran microspheres using kinetic Monte Carlo simulations.
    Vlugt-Wensink KD; Vlugt TJ; Jiskoot W; Crommelin DJ; Verrijk R; Hennink WE
    J Control Release; 2006 Mar; 111(1-2):117-27. PubMed ID: 16430986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.