These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31956795)

  • 1. Hydrogen Sensors Based on Flexible Carbon Nanotube-Palladium Composite Sheets Integrated with Ripstop Fabric.
    McConnell C; Kanakaraj SN; Dugre J; Malik R; Zhang G; Haase MR; Hsieh YY; Fang Y; Mast D; Shanov V
    ACS Omega; 2020 Jan; 5(1):487-497. PubMed ID: 31956795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Palladium and Carbon Nanotube Composite Films to Hydrogen Gas and Behavior of Conductive Carriers.
    Zou M; Aono Y; Inoue S; Matsumura Y
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable carbon nanotubes.
    Jung D; Han M; Lee GS
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3050-7. PubMed ID: 25619413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit.
    Xiao M; Liang S; Han J; Zhong D; Liu J; Zhang Z; Peng L
    ACS Sens; 2018 Apr; 3(4):749-756. PubMed ID: 29620873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-standing carbon nanotube-titania photoactive sheets.
    Koo Y; Malik R; Alvarez N; Shanov VN; Schulz M; Sankar J; Yun Y
    J Colloid Interface Sci; 2015 Jun; 448():148-55. PubMed ID: 25725399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of multiwall carbon nanotube sheet based hydrogen sensor on a stacking multi-layer structure.
    Yan K; Toku Y; Morita Y; Ju Y
    Nanotechnology; 2018 Sep; 29(37):375503. PubMed ID: 29932425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd-Decorated Multi-Walled Carbon Nanotube Sensor for Hydrogen Detection.
    Kim JK; Han M; Kim Y; An HK; Lee S; Kong SH; Jung D
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3707-3710. PubMed ID: 33715678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity.
    Viet NX; Kishimoto S; Ohno Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6389-6395. PubMed ID: 30672689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect-Induced Adsorption Switching (p- to n- Type) in Conducting Bare Carbon Nanotube Film for the Development of Highly Sensitive and Flexible Chemiresistive-Based Methanol and NO
    Prakash J; Rao PT; Rohilla R; Nechiyil D; Kaur M; Ganapathi KS; Debnath AK; Kaushal A; Bahadur J; Dasgupta K
    ACS Omega; 2023 Feb; 8(7):6708-6719. PubMed ID: 36844608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube Paper-Based Electroanalytical Devices.
    Koo Y; Shanov VN; Yun Y
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets.
    Tofighy MA; Mohammadi T
    J Hazard Mater; 2011 Jan; 185(1):140-7. PubMed ID: 20926186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H
    Li X; Le Thai M; Dutta RK; Qiao S; Chandran GT; Penner RM
    ACS Sens; 2017 Feb; 2(2):282-289. PubMed ID: 28723148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypyrrole-Wrapped Carbon Nanotube Composite Films Coated on Diazonium-Modified Flexible ITO Sheets for the Electroanalysis of Heavy Metal Ions.
    Lo M; Seydou M; Bensghaïer A; Pires R; Gningue-Sall D; Aaron JJ; Mekhalif Z; Delhalle J; Chehimi MM
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles.
    Yilmazoglu O; Yadav S; Cicek D; Schneider JJ
    Nanotechnology; 2016 Sep; 27(36):365502. PubMed ID: 27481641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-based ethanol sensors.
    Brahim S; Colbern S; Gump R; Moser A; Grigorian L
    Nanotechnology; 2009 Jun; 20(23):235502. PubMed ID: 19448296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application.
    Hu CF; Wang JY; Liu YC; Tsai MH; Fang W
    Nanotechnology; 2013 Nov; 24(44):444006. PubMed ID: 24113135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.