These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31956840)

  • 1. Selective Detection of Cu
    Takagiri Y; Ikuta T; Maehashi K
    ACS Omega; 2020 Jan; 5(1):877-881. PubMed ID: 31956840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical detection of ppb region NO
    Ikuta T; Tamaki T; Masai H; Nakanishi R; Endo K; Terao J; Maehashi K
    Nanoscale Adv; 2021 Oct; 3(20):5793-5800. PubMed ID: 36132664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiacalix[4]arene-based complex with Co(II) ions as electrode modifier for simultaneous electrochemical determination of Cd(II), Pb(II), and Cu(II).
    Li XT; Niu X; Yang J; Pei WY; Ma JF
    Mikrochim Acta; 2022 Aug; 189(9):344. PubMed ID: 36001162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur-Bridged Co(II)-Thiacalix[4]arene Metal-Organic Framework as an Electrochemical Sensor for the Determination of Toxic Heavy Metals.
    Guo TT; Cao XY; An YY; Zhang XL; Yan JZ
    Inorg Chem; 2023 Mar; 62(11):4485-4494. PubMed ID: 36893304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-promoted intermolecular electron transfer in tetrathiafulvalene-thiacalix[4]arene conjugates and tetrachlorobenzoquinone.
    Zhao BT; Peng QM; Zhu XM; Yan ZN; Zhu WM
    J Org Chem; 2015 Jan; 80(2):1052-8. PubMed ID: 25517424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new thiacalix[4]arene-based metal-organic framework as an efficient electrochemical sensor for trace detection of Cd
    Ma L; Pei WY; Yang J; Ma JF
    Food Chem; 2024 May; 441():138352. PubMed ID: 38199098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple ions detection by field-effect transistor sensors based on ZnO@GO and ZnO@rGO nanomaterials: Application to trace detection of Cr (III) and Cu (II).
    Kim EB; Imran M; Lee EH; Akhtar MS; Ameen S
    Chemosphere; 2022 Jan; 286(Pt 2):131695. PubMed ID: 34426124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions.
    Yi W; He Z; Fei J; He X
    RSC Adv; 2019 May; 9(30):17325-17334. PubMed ID: 35519871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiacalix[4]arene-tetra-(quinoline-8- sulfonate): a Sensitive and Selective Fluorescent Sensor for Co (II).
    Modi K; Panchal U; Dey S; Patel C; Kongor A; Pandya HA; Jain VK
    J Fluoresc; 2016 Sep; 26(5):1729-36. PubMed ID: 27392975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and biological sensing applications based on graphene field-effect transistors.
    Ohno Y; Maehashi K; Matsumoto K
    Biosens Bioelectron; 2010 Dec; 26(4):1727-30. PubMed ID: 20800470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TD-DFT Study on Thiacalix[4]arene, the Receptor of a Fluorescent Chemosensor for Cu
    Chen S; Hu X; Li Y
    J Phys Chem A; 2017 Sep; 121(37):6942-6948. PubMed ID: 28841318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.
    Piccinini E; Bliem C; Reiner-Rozman C; Battaglini F; Azzaroni O; Knoll W
    Biosens Bioelectron; 2017 Jun; 92():661-667. PubMed ID: 27836616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a mApple-D6A3-mediated biosensor for detection of heavy metal ions.
    Ji Y; Guan F; Zhou X; Liu X; Wu N; Liu D; Tian J
    AMB Express; 2020 Dec; 10(1):213. PubMed ID: 33284386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Carbon Quantum Dots for Highly Sensitive Graphene Transistors for Cu
    Fan Q; Li J; Zhu Y; Yang Z; Shen T; Guo Y; Wang L; Mei T; Wang J; Wang X
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4797-4803. PubMed ID: 31909585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The Preparation and Properties Study of Micellar Thiacalixarenes Self-Assembled Fluorescent Chemosensor].
    Hu XJ; Zhang Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):567-70. PubMed ID: 27209770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cubic luminescent graphene oxide functionalized Zn-based metal-organic framework composite for fast and highly selective detection of Cu(2+) ions in aqueous solution.
    Hao L; Song H; Su Y; Lv Y
    Analyst; 2014 Feb; 139(4):764-70. PubMed ID: 24352516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly selective fluorescence and absorption sensor for rapid recognition and detection of Cu
    Zhong T; Jiang N; Li C; Wang G
    Luminescence; 2022 Mar; 37(3):391-398. PubMed ID: 34931444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies.
    Bayramoğlu G; Yakup Arica M
    Bioresour Technol; 2009 Jan; 100(1):186-93. PubMed ID: 18632265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new thiacalix[4]arene-fluorescein based probe for detection of CN(-) and Cu(2+) ions and construction of a sequential logic circuit.
    Sharma N; Reja SI; Bhalla V; Kumar M
    Dalton Trans; 2014 Nov; 43(42):15929-36. PubMed ID: 25230713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.