These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31956991)

  • 1. Online control of cell culture redox potential prevents antibody interchain disulfide bond reduction.
    Handlogten MW; Wang J; Ahuja S
    Biotechnol Bioeng; 2020 May; 117(5):1329-1336. PubMed ID: 31956991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-column disulfide bond formation of monoclonal antibodies during Protein A chromatography eliminates low molecular weight species and rescues reduced antibodies.
    Tan Z; Ehamparanathan V; Ren T; Tang P; Hoffman L; Kuang J; Liu P; Huang C; Du C; Tao L; Chemmalil L; Lewandowski A; Ghose S; Li ZJ; Liu S
    MAbs; 2020; 12(1):1829333. PubMed ID: 33016217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization and kinetic modeling of interchain disulfide bond reoxidation of monoclonal antibodies in bioprocesses.
    Tang P; Tan Z; Ehamparanathan V; Ren T; Hoffman L; Du C; Song Y; Tao L; Lewandowski A; Ghose S; Li ZJ; Liu S
    MAbs; 2020; 12(1):1829336. PubMed ID: 33031716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid.
    Mun M; Khoo S; Do Minh A; Dvornicky J; Trexler-Schmidt M; Kao YH; Laird MW
    Biotechnol Bioeng; 2015 Apr; 112(4):734-42. PubMed ID: 25384896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing.
    Handlogten MW; Zhu M; Ahuja S
    Biotechnol Bioeng; 2017 Jul; 114(7):1469-1477. PubMed ID: 28262915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Untargeted proteomics reveals upregulation of stress response pathways during CHO-based monoclonal antibody manufacturing process leading to disulfide bond reduction.
    Park SY; Egan S; Cura AJ; Aron KL; Xu X; Zheng M; Borys M; Ghose S; Li Z; Lee K
    MAbs; 2021; 13(1):1963094. PubMed ID: 34424810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability.
    Chung WK; Russell B; Yang Y; Handlogten M; Hudak S; Cao M; Wang J; Robbins D; Ahuja S; Zhu M
    Biotechnol Bioeng; 2017 Jun; 114(6):1264-1274. PubMed ID: 28186329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using hydrogen peroxide to prevent antibody disulfide bond reduction during manufacturing process.
    Du C; Huang Y; Borwankar A; Tan Z; Cura A; Yee JC; Singh N; Ludwig R; Borys M; Ghose S; Mussa N; Li ZJ
    MAbs; 2018 Apr; 10(3):500-510. PubMed ID: 29336721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of antibody disulfide reduction and re-oxidation and impact to biological activities.
    Wang T; Liu YD; Cai B; Huang G; Flynn GC
    J Pharm Biomed Anal; 2015 Jan; 102():519-28. PubMed ID: 25459952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing.
    Trexler-Schmidt M; Sargis S; Chiu J; Sze-Khoo S; Mun M; Kao YH; Laird MW
    Biotechnol Bioeng; 2010 Jun; 106(3):452-61. PubMed ID: 20178122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of at-line assay to monitor charge variants of MAbs during production.
    St Amand MM; Ogunnaike BA; Robinson AS
    Biotechnol Prog; 2014; 30(1):249-55. PubMed ID: 24382831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer.
    McLeod J; O'Callaghan PM; Pybus LP; Wilkinson SJ; Root T; Racher AJ; James DC
    Biotechnol Bioeng; 2011 Sep; 108(9):2193-204. PubMed ID: 21445882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of an analytical approach to assess an antibody's potential for disulfide reduction.
    Yang Y; Bastani N; Lagler SK; Harris D; Nagy A; Chen P; Patel A; Li Y; Gowetski DB; Lei QP
    Biotechnol Prog; 2022 Mar; 38(2):e3229. PubMed ID: 34962716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioredoxin 1 is responsible for antibody disulfide reduction in CHO cell culture.
    Koterba KL; Borgschulte T; Laird MW
    J Biotechnol; 2012 Jan; 157(1):261-7. PubMed ID: 22138638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts on product quality attributes of monoclonal antibodies produced in CHO cell bioreactor cultures during intentional mycoplasma contamination events.
    Fratz-Berilla EJ; Angart P; Graham RJ; Powers DN; Mohammad A; Kohnhorst C; Faison T; Velugula-Yellela SR; Trunfio N; Agarabi C
    Biotechnol Bioeng; 2020 Sep; 117(9):2802-2815. PubMed ID: 32436993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Case Study: an accelerated 8-day monoclonal antibody production process based on high seeding densities.
    Padawer I; Ling WL; Bai Y
    Biotechnol Prog; 2013; 29(3):829-32. PubMed ID: 23596148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process performance and product quality in an integrated continuous antibody production process.
    Karst DJ; Steinebach F; Soos M; Morbidelli M
    Biotechnol Bioeng; 2017 Feb; 114(2):298-307. PubMed ID: 27497430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of enzymatic reduction on bivalent bispecific antibody fragmentation and loss of product purity upon reoxidation.
    Swope N; Chung WK; Cao M; Motabar D; Liu D; Ahuja S; Handlogten M
    Biotechnol Bioeng; 2020 Apr; 117(4):1063-1071. PubMed ID: 31930476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic understanding of disulfide reduction during monoclonal antibody production.
    Cura AJ; Xu X; Egan S; Aron K; Jenkins L; Hageman T; Huang Y; Chollangi S; Borys M; Ghose S; Li ZJ
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9655-9669. PubMed ID: 32997205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process.
    Handlogten MW; Lee-O'Brien A; Roy G; Levitskaya SV; Venkat R; Singh S; Ahuja S
    Biotechnol Bioeng; 2018 Jan; 115(1):126-138. PubMed ID: 28941283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.