BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31957350)

  • 1. Flexible Micro-Supercapacitors Based on Naturally Derived Juglone.
    Wu J; Yu D; Wang G; Yang J; Wang H; Liu X; Guo L; Han X
    Chempluschem; 2018 May; 83(5):423-430. PubMed ID: 31957350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renewable-emodin-based wearable supercapacitors.
    Hu P; Chen T; Yang Y; Wang H; Luo Z; Yang J; Fu H; Guo L
    Nanoscale; 2017 Jan; 9(4):1423-1427. PubMed ID: 28084489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage.
    El-Kady MF; Kaner RB
    Nat Commun; 2013; 4():1475. PubMed ID: 23403576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible energy-storage devices: design consideration and recent progress.
    Wang X; Lu X; Liu B; Chen D; Tong Y; Shen G
    Adv Mater; 2014 Jul; 26(28):4763-82. PubMed ID: 24913891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphitic carbon nitride decorated with FeNi
    Talukdar M; Behera SK; Deb P
    Dalton Trans; 2019 Aug; 48(32):12137-12146. PubMed ID: 31328743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture.
    Liu N; Gao Y
    Small; 2017 Dec; 13(45):. PubMed ID: 28976109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo
    Wang Q; Ma Y; Wu Y; Zhang D; Miao M
    ChemSusChem; 2017 Apr; 10(7):1427-1435. PubMed ID: 28195423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Fabrication of Printed Paper-Based Hybrid Micro-Supercapacitor by using Graphene and Redox-Active Electrolyte.
    Nagar B; Dubal DP; Pires L; Merkoçi A; Gómez-Romero P
    ChemSusChem; 2018 Jun; 11(11):1849-1856. PubMed ID: 29786963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication.
    Yuan Y; Jiang L; Li X; Zuo P; Xu C; Tian M; Zhang X; Wang S; Lu B; Shao C; Zhao B; Zhang J; Qu L; Cui T
    Nat Commun; 2020 Dec; 11(1):6185. PubMed ID: 33273456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct laser-patterned micro-supercapacitors from paintable MoS2 films.
    Cao L; Yang S; Gao W; Liu Z; Gong Y; Ma L; Shi G; Lei S; Zhang Y; Zhang S; Vajtai R; Ajayan PM
    Small; 2013 Sep; 9(17):2905-10. PubMed ID: 23589515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs.
    Liang J; Jiang C; Wu W
    Nanoscale; 2019 Apr; 11(15):7041-7061. PubMed ID: 30931460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodologies for Fabricating Flexible Supercapacitors.
    Jang S; Kang J; Kwak S; Seol ML; Meyyappan M; Nam I
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles.
    Xue M; Xie Z; Zhang L; Ma X; Wu X; Guo Y; Song W; Li Z; Cao T
    Nanoscale; 2011 Jul; 3(7):2703-8. PubMed ID: 21369565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge Transfer Salt and Graphene Heterostructure-Based Micro-Supercapacitors with Alternating Current Line-Filtering Performance.
    Zhao D; Chang W; Lu C; Yang C; Jiang K; Chang X; Lin H; Zhang F; Han S; Hou Z; Zhuang X
    Small; 2019 Nov; 15(48):e1901494. PubMed ID: 31074934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly flexible and all-solid-state paperlike polymer supercapacitors.
    Meng C; Liu C; Chen L; Hu C; Fan S
    Nano Lett; 2010 Oct; 10(10):4025-31. PubMed ID: 20831255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.