BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31957352)

  • 1. Incorporating Energetic Moieties into Four Oxadiazole Ring Systems for the Generation of High-Performance Energetic Materials.
    Wang B; Xiong H; Cheng G; Yang H
    Chempluschem; 2018 May; 83(5):439-447. PubMed ID: 31957352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinations of furoxan and 1,2,4-oxadiazole for the generation of high performance energetic materials.
    Xiong H; Yang H; Lei C; Yang P; Hu W; Cheng G
    Dalton Trans; 2019 Oct; 48(39):14705-14711. PubMed ID: 31538636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An interesting 1,4,2,5-dioxadiazine-furazan system: structural modification by incorporating versatile functionalities.
    Yu Q; Cheng G; Ju X; Lu C; Lin Q; Yang H
    Dalton Trans; 2017 Oct; 46(41):14301-14309. PubMed ID: 29019362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,2,4,5-Dioxadiazine-functionalized [N-NO
    Huang H; Shi Y; Liu Y; Yang J
    Dalton Trans; 2016 Oct; 45(39):15382-15389. PubMed ID: 27603696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials.
    Wei H; He C; Zhang J; Shreeve JM
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9367-71. PubMed ID: 26088918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Family of Energetic Materials Based on 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Backbones With Low Insensitivity and Good Detonation Performance.
    Xue Q; Bi FQ; Zhang JL; Wang ZJ; Zhai LJ; Huo H; Wang BZ; Zhang SY
    Front Chem; 2019; 7():942. PubMed ID: 32154208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Coplanar Bicyclic Backbones for 1,2,4-Triazole-1,2,4-Oxadiazole-Derived Energetic Materials.
    Cao W; Dong W; Lu Z; Bi Y; Hu Y; Wang T; Zhang C; Li Z; Yu Q; Zhang J
    Chemistry; 2021 Oct; 27(55):13807-13818. PubMed ID: 34323327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Synthesis of Nitrogen-Rich Azo-Bridged Furoxanylazoles as High-Performance Energetic Materials.
    Larin AA; Shaferov AV; Kulikov AS; Pivkina AN; Monogarov KA; Dmitrienko AO; Ananyev IV; Khakimov DV; Fershtat LL; Makhova NN
    Chemistry; 2021 Oct; 27(59):14628-14637. PubMed ID: 34324750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitromethane Bridged Bis(1,3,4-oxadiazoles): Trianionic Energetic Salts with Low Sensitivities.
    Yu Q; Imler GH; Parrish DA; Shreeve JM
    Chemistry; 2017 Dec; 23(70):17682-17686. PubMed ID: 29124792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Oxygen-Balance Furazan Anions: A Good Choice for High-Performance Energetic Salts.
    Huang H; Shi Y; Liu Y; Yang J
    Chem Asian J; 2016 Jun; 11(11):1688-96. PubMed ID: 26956777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Energetic Coordination Polymers Based on 1,5-Di(nitramino)tetrazole With High Oxygen Content and Outstanding Properties: Syntheses, Crystal Structures, and Detonation Properties.
    Li Y; Yu T; Zhang Y; Hu J; Chen T; Wang Y; Xu K
    Front Chem; 2019; 7():672. PubMed ID: 31681726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-rich salts based on energetic nitroaminodiazido[1,3,5]triazine and guanazine.
    Huang Y; Zhang Y; Shreeve JM
    Chemistry; 2011 Feb; 17(5):1538-46. PubMed ID: 21268156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic salts based on monoanions of N,N-bis(1H-tetrazol-5-yl)amine and 5,5'-bis(tetrazole).
    Guo Y; Tao GH; Zeng Z; Gao H; Parrish DA; Shreeve JM
    Chemistry; 2010 Mar; 16(12):3753-62. PubMed ID: 20151439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4-Nitro-3-(5-tetrazole)furoxan and its salts: synthesis, characterization, and energetic properties.
    Liang L; Wang K; Bian C; Ling L; Zhou Z
    Chemistry; 2013 Oct; 19(44):14902-10. PubMed ID: 24105661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1,2,4-Oxadiazole-Bridged Polynitropyrazole Energetic Materials with Enhanced Thermal Stability and Low Sensitivity.
    Yan T; Cheng G; Yang H
    Chempluschem; 2019 Oct; 84(10):1567-1577. PubMed ID: 31943922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of Tetrazolylfuroxan Organic Salts: Multipurpose Green Energetic Materials with High Enthalpies of Formation and Excellent Detonation Performance.
    Larin AA; Muravyev NV; Pivkina AN; Suponitsky KY; Ananyev IV; Khakimov DV; Fershtat LL; Makhova NN
    Chemistry; 2019 Mar; 25(16):4225-4233. PubMed ID: 30644611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the energetic potential of 1,2,4-oxadiazole derivatives: combining the benefits of a 1,2,4-oxadiazole framework with various energetic functionalities.
    Yan C; Wang K; Liu T; Yang H; Cheng G; Zhang Q
    Dalton Trans; 2017 Oct; 46(41):14210-14218. PubMed ID: 28990608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Characterization of 4-(1,2,4-Triazole-5-yl)furazan Derivatives as High-Performance Insensitive Energetic Materials.
    Xu Z; Cheng G; Yang H; Zhang J; Shreeve JM
    Chemistry; 2018 Jul; 24(41):10488-10497. PubMed ID: 29762890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,2,3-Triazolo[4,5,-e]furazano[3,4,-b]pyrazine 6-oxide--a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials.
    Thottempudi V; Yin P; Zhang J; Parrish DA; Shreeve JM
    Chemistry; 2014 Jan; 20(2):542-8. PubMed ID: 24285702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic isomers of bridged oxadiazole nitramines: the effect of asymmetric heterocyclics on stability and energetic properties.
    Liao S; Liu T; Zhou Z; Wang K; Song S; Zhang Q
    Dalton Trans; 2021 Oct; 50(38):13286-13293. PubMed ID: 34477182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.