BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31957435)

  • 1.
    Chen J; Yang H; Zhu L; Wu Z; Li W; Tang Y; Liu G
    Chem Res Toxicol; 2020 Feb; 33(2):640-650. PubMed ID: 31957435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor.
    Watanabe R; Ohashi R; Esaki T; Kawashima H; Natsume-Kitatani Y; Nagao C; Mizuguchi K
    Sci Rep; 2019 Dec; 9(1):18782. PubMed ID: 31827176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humans.
    Dave RA; Morris ME
    Drug Metab Dispos; 2015 Jan; 43(1):73-81. PubMed ID: 25352657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical determinants of human renal clearance.
    Varma MV; Feng B; Obach RS; Troutman MD; Chupka J; Miller HR; El-Kattan A
    J Med Chem; 2009 Aug; 52(15):4844-52. PubMed ID: 19445515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Human Clearance Using In Silico Models with Reduced Bias.
    Lombardo F; Bentzien J; Berellini G; Muegge I
    Mol Pharm; 2024 Mar; 21(3):1192-1203. PubMed ID: 38285644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico Prediction of Aqueous Solubility: a Comparative Study of Local and Global Predictive Models.
    Raevsky OA; Polianczyk DE; Grigorev VY; Raevskaja OE; Dearden JC
    Mol Inform; 2015 Jun; 34(6-7):417-30. PubMed ID: 27490387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development.
    del Amo EM; Vellonen KS; Kidron H; Urtti A
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):215-26. PubMed ID: 25603198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationship models of clinical pharmacokinetics: clearance and volume of distribution.
    Gombar VK; Hall SD
    J Chem Inf Model; 2013 Apr; 53(4):948-57. PubMed ID: 23451981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Further Verification of Physiologically-Based Kidney Models: Predictability of the Effects of Urine-Flow and Urine-pH on Renal Clearance.
    Matsuzaki T; Scotcher D; Darwich AS; Galetin A; Rostami-Hodjegan A
    J Pharmacol Exp Ther; 2019 Feb; 368(2):157-168. PubMed ID: 30413628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Structure - Pharmacokinetic Relationships for Plasma Clearance of Basic Drugs with Consideration of the Major Elimination Pathway.
    Zhivkova ZD
    J Pharm Pharm Sci; 2017; 20(0):135-147. PubMed ID: 28554345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Drug Properties and Ontogeny of Transporters on Pediatric Renal Clearance through Glomerular Filtration and Active Secretion: a Simulation-Based Study.
    Cristea S; Krekels EHJ; Rostami-Hodjegan A; Allegaert K; Knibbe CAJ
    AAPS J; 2020 Jun; 22(4):87. PubMed ID: 32566984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating in Silico and in Vitro Approaches To Predict Drug Accessibility to the Central Nervous System.
    Zhang YY; Liu H; Summerfield SG; Luscombe CN; Sahi J
    Mol Pharm; 2016 May; 13(5):1540-50. PubMed ID: 27015243
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Kaboudi N; Alizadeh AA; Shayanfar A
    Xenobiotica; 2022 Apr; 52(4):346-352. PubMed ID: 35543185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-pharmacokinetic relationship modelling: apparent volume of distribution.
    Ghafourian T; Barzegar-Jalali M; Hakimiha N; Cronin MT
    J Pharm Pharmacol; 2004 Mar; 56(3):339-50. PubMed ID: 15025859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Silico Prediction of Volume of Distribution in Humans. Extensive Data Set and the Exploration of Linear and Nonlinear Methods Coupled with Molecular Interaction Fields Descriptors.
    Lombardo F; Jing Y
    J Chem Inf Model; 2016 Oct; 56(10):2042-2052. PubMed ID: 27602694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid in silico models for drug-induced liver injury using chemical descriptors and in vitro cell-imaging information.
    Zhu XW; Sedykh A; Liu SS
    J Appl Toxicol; 2014 Mar; 34(3):281-8. PubMed ID: 23640866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico categorization of in vivo intrinsic clearance using machine learning.
    Hsiao YW; Fagerholm U; Norinder U
    Mol Pharm; 2013 Apr; 10(4):1318-21. PubMed ID: 23427914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.