These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31958140)

  • 21. The ability of individuals to assess population density influences the evolution of emigration propensity and dispersal distance.
    Poethke HJ; Gros A; Hovestadt T
    J Theor Biol; 2011 Aug; 282(1):93-9. PubMed ID: 21605568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat.
    Cabe PR; Page RB; Hanlon TJ; Aldrich ME; Connors L; Marsh DM
    Heredity (Edinb); 2007 Jan; 98(1):53-60. PubMed ID: 17006531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental predictors of dispersal traits across a species' geographic range.
    LaRue EA; Holland JD; Emery NC
    Ecology; 2018 Aug; 99(8):1857-1865. PubMed ID: 29846000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Outbreeding reduces survival during metamorphosis in a headwater stream salamander.
    Lowe WH; Addis BR; Cochrane MM
    Mol Ecol; 2024 Jun; 33(12):e17375. PubMed ID: 38699973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stage-Specific Demographic Effects of Hydrologic Variation in a Stream Salamander.
    Cochrane MM; Addis BR; Lowe WH
    Am Nat; 2024 May; 203(5):E175-E187. PubMed ID: 38635365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reproductive benefits associated with dispersal in headwater populations of Trinidadian guppies (Poecilia reticulata).
    Borges IL; Dangerfield JC; Angeloni LM; Funk WC; Fitzpatrick SW
    Ecol Lett; 2022 Feb; 25(2):344-354. PubMed ID: 34825455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling the effects of spatial heterogeneity and temporal variation in extinction probability on mosquito populations.
    Alcalay Y; Tsurim I; Ovadia O
    Ecol Appl; 2017 Dec; 27(8):2342-2358. PubMed ID: 28851019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lifetime fitness correlates of natal dispersal distance in a colonial bird.
    Serrano D; Tella JL
    J Anim Ecol; 2012 Jan; 81(1):97-107. PubMed ID: 21644982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics.
    Peterman WE; Semlitsch RD
    Oecologia; 2014 Oct; 176(2):357-69. PubMed ID: 25154754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate and density influence annual survival and movement in a migratory songbird.
    McKellar AE; Reudink MW; Marra PP; Ratcliffe LM; Wilson S
    Ecol Evol; 2015 Dec; 5(24):5892-904. PubMed ID: 26811763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating across life-history stages: consequences of natal habitat effects on dispersal.
    Benard MF; McCauley SJ
    Am Nat; 2008 May; 171(5):553-67. PubMed ID: 18419566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Empirical tests of habitat selection theory reveal that conspecific density and patch quality, but not habitat amount, drive long-distance immigration in a wild bird.
    Rushing CS; Brandt Ryder T; Valente JJ; Scott Sillett T; Marra PP
    Ecol Lett; 2021 Jun; 24(6):1167-1177. PubMed ID: 33742759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersal evolution in temporally variable environments: implications for plant range dynamics.
    Oldfather MF; Van Den Elzen CL; Heffernan PM; Emery NC
    Am J Bot; 2021 Sep; 108(9):1584-1594. PubMed ID: 34587290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population.
    Camacho C; Canal D; Potti J
    BMC Evol Biol; 2016 Aug; 16():158. PubMed ID: 27503506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Individual dispersal, landscape connectivity and ecological networks.
    Baguette M; Blanchet S; Legrand D; Stevens VM; Turlure C
    Biol Rev Camb Philos Soc; 2013 May; 88(2):310-26. PubMed ID: 23176626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consequences of ignoring dispersal variation in network models for landscape connectivity.
    Sullivan LL; Michalska-Smith MJ; Sperry KP; Moeller DA; Shaw AK
    Conserv Biol; 2021 Jun; 35(3):944-954. PubMed ID: 32975336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Context-dependent dispersal determines relatedness and genetic structure in a patchy amphibian population.
    Unglaub B; Cayuela H; Schmidt BR; Preißler K; Glos J; Steinfartz S
    Mol Ecol; 2021 Oct; 30(20):5009-5028. PubMed ID: 34490661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing fine-scale pondscape connectivity with amphibian eyes: An integrative approach using genomic and capture-mark-recapture data.
    Reyes-Moya I; Sánchez-Montes G; Babik W; Dudek K; Martínez-Solano Í
    Mol Ecol; 2024 Jan; 33(2):e17206. PubMed ID: 37997532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Condition-dependent dispersal of a patchily distributed riparian ground beetle in response to disturbance.
    Bates AJ; Sadler JP; Fowles AP
    Oecologia; 2006 Nov; 150(1):50-60. PubMed ID: 16906428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes.
    Hovestadt T; Binzenhöfer B; Nowicki P; Settele J
    J Anim Ecol; 2011 Sep; 80(5):1070-7. PubMed ID: 21585369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.