BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 31958253)

  • 1. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering.
    Singh YP; Dasgupta S; Nayar S; Bhaskar R
    J Biomater Sci Polym Ed; 2020 Apr; 31(6):781-803. PubMed ID: 31958253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.
    Pangon A; Saesoo S; Saengkrit N; Ruktanonchai U; Intasanta V
    Carbohydr Polym; 2016 Jun; 144():419-27. PubMed ID: 27083834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.
    Jeong SI; Krebs MD; Bonino CA; Samorezov JE; Khan SA; Alsberg E
    Tissue Eng Part A; 2011 Jan; 17(1-2):59-70. PubMed ID: 20672984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide).
    Duan B; Dong C; Yuan X; Yao K
    J Biomater Sci Polym Ed; 2004; 15(6):797-811. PubMed ID: 15255527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering.
    Frohbergh ME; Katsman A; Botta GP; Lazarovici P; Schauer CL; Wegst UG; Lelkes PI
    Biomaterials; 2012 Dec; 33(36):9167-78. PubMed ID: 23022346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers.
    Janković B; Pelipenko J; Škarabot M; Muševič I; Kristl J
    Int J Pharm; 2013 Oct; 455(1-2):338-47. PubMed ID: 23906751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L; Zhu C; Fan D; Liu B; Ma X; Duan Z; Zhou Y
    J Biomed Mater Res A; 2011 Dec; 99(3):395-409. PubMed ID: 22021187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly(ethylene oxide).
    Mengistu Lemma S; Bossard F; Rinaudo M
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds.
    Jing X; Mi HY; Peng J; Peng XF; Turng LS
    Carbohydr Polym; 2015 Mar; 117():941-949. PubMed ID: 25498720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning.
    Pakravan M; Heuzey MC; Ajji A
    Biomacromolecules; 2012 Feb; 13(2):412-21. PubMed ID: 22229633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation.
    Jafari J; Emami SH; Samadikuchaksaraei A; Bahar MA; Gorjipour F
    Biomed Mater Eng; 2011; 21(2):99-112. PubMed ID: 21654066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration.
    Wei Y; Zhang X; Song Y; Han B; Hu X; Wang X; Lin Y; Deng X
    Biomed Mater; 2011 Oct; 6(5):055008. PubMed ID: 21893702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of chitosan's rheological properties and its ability to electrospin.
    Klossner RR; Queen HA; Coughlin AJ; Krause WE
    Biomacromolecules; 2008 Oct; 9(10):2947-53. PubMed ID: 18785774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation.
    Ho MH; Liao MH; Lin YL; Lai CH; Lin PI; Chen RM
    Int J Nanomedicine; 2014; 9():4293-304. PubMed ID: 25246786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterizations of EGDE crosslinked chitosan electrospun membranes.
    Aqil A; Tchemtchoua VT; Colige A; Atanasova G; Poumay Y; Jérôme C
    Clin Hemorheol Microcirc; 2015; 60(1):39-50. PubMed ID: 25818149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats.
    Fazli Y; Shariatinia Z
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():641-652. PubMed ID: 27987755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun chitosan nanofibers for hepatocyte culture.
    Feng ZQ; Leach MK; Chu XH; Wang YC; Tian T; Shi XL; Ding YT; Gu ZZ
    J Biomed Nanotechnol; 2010 Dec; 6(6):658-66. PubMed ID: 21361130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tripolyphosphate-crosslinked chitosan/poly (ethylene oxide) electrospun nanofibrous mats as a floating gastro-retentive delivery system for ranitidine hydrochloride.
    Darbasizadeh B; Motasadizadeh H; Foroughi-Nia B; Farhadnejad H
    J Pharm Biomed Anal; 2018 May; 153():63-75. PubMed ID: 29462781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.