These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31958883)

  • 1. Dual sgRNA-directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system.
    Liu K; Sun B; You H; Tu JL; Yu X; Zhao P; Xu JW
    Microb Biotechnol; 2020 Mar; 13(2):386-396. PubMed ID: 31958883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9.
    Tu JL; Bai XY; Xu YL; Li N; Xu JW
    Appl Environ Microbiol; 2021 Nov; 87(23):e0151021. PubMed ID: 34524900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum.
    Wang PA; Xiao H; Zhong JJ
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1661-1671. PubMed ID: 31865439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Efficient CRISPR/Cas9 Genome Editing System for a
    Tan Y; Yu X; Zhang Z; Tian J; Feng N; Tang C; Zou G; Zhang J
    J Fungi (Basel); 2023 Dec; 9(12):. PubMed ID: 38132771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient expression of heterologous genes by the introduction of the endogenous glyceraldehyde-3-phosphate dehydrogenase gene intron 1 in Ganoderma lucidum.
    You H; Sun B; Li N; Xu JW
    Microb Cell Fact; 2021 Aug; 20(1):164. PubMed ID: 34419069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cas9-gRNA ribonucleoprotein complex-mediated editing of pyrG in Ganoderma lucidum and unexpected insertion of contaminated DNA fragments.
    Eom H; Choi YJ; Nandre R; Han HG; Kim S; Kim M; Oh YL; Nakazawa T; Honda Y; Ro HS
    Sci Rep; 2023 Jul; 13(1):11133. PubMed ID: 37429890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.
    Mu D; Shi L; Ren A; Li M; Wu F; Jiang A; Zhao M
    PLoS One; 2012; 7(8):e43737. PubMed ID: 22937087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 (
    Shen Y; Cohen JL; Nicoloro SM; Kelly M; Yenilmez B; Henriques F; Tsagkaraki E; Edwards YJK; Hu X; Friedline RH; Kim JK; Czech MP
    J Biol Chem; 2018 Nov; 293(44):17291-17305. PubMed ID: 30190322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells.
    Canver MC; Bauer DE; Dass A; Yien YY; Chung J; Masuda T; Maeda T; Paw BH; Orkin SH
    J Biol Chem; 2014 Aug; 289(31):21312-24. PubMed ID: 24907273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 19. Efficient CRISPR/Cas9-based plant genomic fragment deletions by microhomology-mediated end joining.
    Tan J; Zhao Y; Wang B; Hao Y; Wang Y; Li Y; Luo W; Zong W; Li G; Chen S; Ma K; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2020 Nov; 18(11):2161-2163. PubMed ID: 32336015
    [No Abstract]   [Full Text] [Related]  

  • 20. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.