BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 31959124)

  • 1. Comparison of multiple algorithms to reliably detect structural variants in pears.
    Liu Y; Zhang M; Sun J; Chang W; Sun M; Zhang S; Wu J
    BMC Genomics; 2020 Jan; 21(1):61. PubMed ID: 31959124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of structural variants detected by PacBio-CLR and ONT sequencing in pear.
    Liu Y; Zhang M; Wang R; Li B; Jiang Y; Sun M; Chang Y; Wu J
    BMC Genomics; 2022 Dec; 23(1):830. PubMed ID: 36517766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaSV: an accurate and integrative structural-variant caller for next generation sequencing.
    Mohiyuddin M; Mu JC; Li J; Bani Asadi N; Gerstein MB; Abyzov A; Wong WH; Lam HY
    Bioinformatics; 2015 Aug; 31(16):2741-4. PubMed ID: 25861968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVLR: Genome Structural Variant Detection Using Long-Read Sequencing Data.
    Gu W; Zhou A; Wang L; Sun S; Cui X; Zhu D
    J Comput Biol; 2021 Aug; 28(8):774-788. PubMed ID: 33973820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking long-read aligners and SV callers for structural variation detection in Oxford nanopore sequencing data.
    Helal AA; Saad BT; Saad MT; Mosaad GS; Aboshanab KM
    Sci Rep; 2024 Mar; 14(1):6160. PubMed ID: 38486064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing structural variation in a personal genome-towards a human reference diploid genome.
    English AC; Salerno WJ; Hampton OA; Gonzaga-Jauregui C; Ambreth S; Ritter DI; Beck CR; Davis CF; Dahdouli M; Ma S; Carroll A; Veeraraghavan N; Bruestle J; Drees B; Hastie A; Lam ET; White S; Mishra P; Wang M; Han Y; Zhang F; Stankiewicz P; Wheeler DA; Reid JG; Muzny DM; Rogers J; Sabo A; Worley KC; Lupski JR; Boerwinkle E; Gibbs RA
    BMC Genomics; 2015 Apr; 16(1):286. PubMed ID: 25886820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iSVP: an integrated structural variant calling pipeline from high-throughput sequencing data.
    Mimori T; Nariai N; Kojima K; Takahashi M; Ono A; Sato Y; Yamaguchi-Kabata Y; Nagasaki M
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S8. PubMed ID: 24564972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAMnet: detecting and genotyping deletions and insertions based on long reads and a deep learning approach.
    Ding H; Luo J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of somatic structural variants from short-read next-generation sequencing data.
    Gong T; Hayes VM; Chan EKF
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32379294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SVsearcher: A more accurate structural variation detection method in long read data.
    Zheng Y; Shang X; Sung WK
    Comput Biol Med; 2023 May; 158():106843. PubMed ID: 37019014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of structural variant callers for massive whole-genome sequence data.
    Joe S; Park JL; Kim J; Kim S; Park JH; Yeo MK; Lee D; Yang JO; Kim SY
    BMC Genomics; 2024 Mar; 25(1):318. PubMed ID: 38549092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise characterization of somatic complex structural variations from tumor/control paired long-read sequencing data with nanomonsv.
    Shiraishi Y; Koya J; Chiba K; Okada A; Arai Y; Saito Y; Shibata T; Kataoka K
    Nucleic Acids Res; 2023 Aug; 51(14):e74. PubMed ID: 37336583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of RAPTR-SV to Identify SVs from Read Pairing and Split Read Signatures.
    Bickhart DM
    Methods Mol Biol; 2018; 1833():143-153. PubMed ID: 30039370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Structural Variation Detection Tools for Long-Read Sequencing Datasets in
    Luan MW; Zhang XM; Zhu ZB; Chen Y; Xie SQ
    Front Genet; 2020; 11():159. PubMed ID: 32211024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural variation detection using next-generation sequencing data: A comparative technical review.
    Guan P; Sung WK
    Methods; 2016 Jun; 102():36-49. PubMed ID: 26845461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
    Trappe K; Emde AK; Ehrlich HC; Reinert K
    Bioinformatics; 2014 Dec; 30(24):3484-90. PubMed ID: 25028727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A recurrence-based approach for validating structural variation using long-read sequencing technology.
    Zhao X; Weber AM; Mills RE
    Gigascience; 2017 Aug; 6(8):1-9. PubMed ID: 28873962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SV-AUTOPILOT: optimized, automated construction of structural variation discovery and benchmarking pipelines.
    Leung WY; Marschall T; Paudel Y; Falquet L; Mei H; Schönhuth A; Maoz Moss TY
    BMC Genomics; 2015 Mar; 16(1):238. PubMed ID: 25887570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GASOLINE: detecting germline and somatic structural variants from long-reads data.
    Magi A; Mattei G; Mingrino A; Caprioli C; Ronchini C; Frigè G; Semeraro R; Baragli M; Bolognini D; Colombo E; Mazzarella L; Pelicci PG
    Sci Rep; 2023 Nov; 13(1):20817. PubMed ID: 38012350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of FASTQ and alignment read order on structural variant calling from long-read sequencing data.
    Lesack KJ; Wasmuth JD
    PeerJ; 2024; 12():e17101. PubMed ID: 38500526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.