BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31959185)

  • 1. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces.
    Walter M; Schenkeveld WDC; Geroldinger G; Gille L; Reissner M; Kraemer SM
    Part Fibre Toxicol; 2020 Jan; 17(1):3. PubMed ID: 31959185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Potential Contribution of Hexavalent Chromium to the Carcinogenicity of Chrysotile Asbestos.
    Walter M; Schenkeveld WDC; Tomatis M; Schelch K; Peter-Vörösmarty B; Geroldinger G; Gille L; Bruzzoniti MC; Turci F; Kraemer SM; Grusch M
    Chem Res Toxicol; 2022 Dec; 35(12):2335-2347. PubMed ID: 36410050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil-pH and cement influence the weathering kinetics of chrysotile asbestos in soils and its hydroxyl radical yield.
    Walter M; Geroldinger G; Gille L; Kraemer SM; Schenkeveld WDC
    J Hazard Mater; 2022 Jun; 431():128068. PubMed ID: 35359096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of pH and Biogenic Ligands on the Weathering of Chrysotile Asbestos: The Pivotal Role of Tetrahedral Fe in Dissolution Kinetics and Radical Formation.
    Walter M; Schenkeveld WDC; Reissner M; Gille L; Kraemer SM
    Chemistry; 2019 Mar; 25(13):3286-3300. PubMed ID: 30417458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of weathering on ecopersistence, reactivity, and potential toxicity of naturally occurring asbestos and asbestiform minerals.
    Enrico Favero-Longo S; Turci F; Tomatis M; Compagnoni R; Piervittori R; Fubini B
    J Toxicol Environ Health A; 2009; 72(5):305-14. PubMed ID: 19184746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface chemistry and surface reactivity of fibrous amphiboles that are not regulated as asbestos.
    Fantauzzi M; Pacella A; Fournier J; Gianfagna A; Andreozzi GB; Rossi A
    Anal Bioanal Chem; 2012 Aug; 404(3):821-33. PubMed ID: 22763717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asbestos health hazard: a spectroscopic study of synthetic geoinspired Fe-doped chrysotile.
    Foresti E; Fornero E; Lesci IG; Rinaudo C; Zuccheri T; Roveri N
    J Hazard Mater; 2009 Aug; 167(1-3):1070-9. PubMed ID: 19264404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.
    Pollastri S; D'Acapito F; Trapananti A; Colantoni I; Andreozzi GB; Gualtieri AF
    J Hazard Mater; 2015 Nov; 298():282-93. PubMed ID: 26073382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyze hydroxyl free radical formation from hydrogen peroxide.
    Floyd RA
    Arch Biochem Biophys; 1983 Aug; 225(1):263-70. PubMed ID: 6311103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli.
    Agashe P; Kuzminov A
    J Biol Chem; 2022 Apr; 298(4):101825. PubMed ID: 35288189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions.
    Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes.
    Choi JK; Vigliaturo R; Gieré R; Pérez-Rodríguez I
    Appl Environ Microbiol; 2023 Jun; 89(6):e0204822. PubMed ID: 37184266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.
    Li Y; Machala L; Yan W
    Environ Sci Technol; 2016 Feb; 50(3):1190-9. PubMed ID: 26713453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical generation at the solid/liquid interface in iron containing minerals.
    Fubini B; Mollo L; Giamello E
    Free Radic Res; 1995 Dec; 23(6):593-614. PubMed ID: 8574353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH Dependence of Hydroxyl Radical, Ferryl, and/or Ferric Peroxo Species Generation in the Heterogeneous Fenton Process.
    Chen Y; Miller CJ; Waite TD
    Environ Sci Technol; 2022 Jan; 56(2):1278-1288. PubMed ID: 34965094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-loaded synthetic chrysotile: a new model solid for studying the role of iron in asbestos toxicity.
    Gazzano E; Turci F; Foresti E; Putzu MG; Aldieri E; Silvagno F; Lesci IG; Tomatis M; Riganti C; Romano C; Fubini B; Roveri N; Ghigo D
    Chem Res Toxicol; 2007 Mar; 20(3):380-7. PubMed ID: 17315889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Haber-Weiss cycle--70 years later.
    Koppenol WH
    Redox Rep; 2001; 6(4):229-34. PubMed ID: 11642713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.