These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 31959752)

  • 61. Early capillary flux homogenization in response to neural activation.
    Lee J; Wu W; Boas DA
    J Cereb Blood Flow Metab; 2016 Feb; 36(2):375-80. PubMed ID: 26661145
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantitative estimates of stimulation-induced perfusion response using two-photon fluorescence microscopy of cortical microvascular networks.
    Chinta LV; Lindvere L; Dorr A; Sahota B; Sled JG; Stefanovic B
    Neuroimage; 2012 Jul; 61(3):517-24. PubMed ID: 22521258
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Widefield fluorescence localization microscopy for transcranial imaging of cortical perfusion with capillary resolution.
    Chen Z; Zhou Q; Robin J; Razansky D
    Opt Lett; 2020 Jul; 45(13):3470-3473. PubMed ID: 32630874
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry.
    Li Y; Wei W; Wang RK
    Sci Rep; 2018 Mar; 8(1):4107. PubMed ID: 29515156
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Changes in effective diffusivity for oxygen during neural activation and deactivation estimated from capillary diameter measured by two-photon laser microscope.
    Ito H; Takuwa H; Tajima Y; Kawaguchi H; Urushihata T; Taniguchi J; Ikoma Y; Seki C; Ibaraki M; Masamoto K; Kanno I
    J Physiol Sci; 2017 Mar; 67(2):325-330. PubMed ID: 27344668
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Brain capillary pericytes exert a substantial but slow influence on blood flow.
    Hartmann DA; Berthiaume AA; Grant RI; Harrill SA; Koski T; Tieu T; McDowell KP; Faino AV; Kelly AL; Shih AY
    Nat Neurosci; 2021 May; 24(5):633-645. PubMed ID: 33603231
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Depth-dependent flow and pressure characteristics in cortical microvascular networks.
    Schmid F; Tsai PS; Kleinfeld D; Jenny P; Weber B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005392. PubMed ID: 28196095
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression.
    Nielsen AN; Fabricius M; Lauritzen M
    J Vasc Res; 2000; 37(6):513-22. PubMed ID: 11146405
    [TBL] [Abstract][Full Text] [Related]  

  • 69. How do changes in diameter at the precapillary level affect cardiovascular function?
    Folkow B; Karlström G; Nilsson H; Sjöblom N
    J Cardiovasc Pharmacol; 1984; 6 Suppl 2():S280-8. PubMed ID: 6206336
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Imaging Glioma Progression by Intravital Microscopy.
    Stanchi F; Matsumoto K; Gerhardt H
    Methods Mol Biol; 2019; 1862():227-243. PubMed ID: 30315471
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Role for capillaries in coupling blood flow with metabolism.
    Sarelius IH; Cohen KD; Murrant CL
    Clin Exp Pharmacol Physiol; 2000 Oct; 27(10):826-9. PubMed ID: 11022977
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina.
    Biesecker KR; Srienc AI; Shimoda AM; Agarwal A; Bergles DE; Kofuji P; Newman EA
    J Neurosci; 2016 Sep; 36(36):9435-45. PubMed ID: 27605617
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regional temperature and quantitative cerebral blood flow responses to cortical spreading depolarization in the rat.
    Li C; Narayan RK; Wang P; Hartings JA
    J Cereb Blood Flow Metab; 2017 May; 37(5):1634-1640. PubMed ID: 27581720
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Precapillary servo control of blood pressure and postcapillary adjustment of flow to tissue metabolic status. A new paradigm for local perfusion regulation.
    Groebe K
    Circulation; 1996 Oct; 94(8):1876-85. PubMed ID: 8873663
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cerebral cortex blood flow and vascular smooth muscle contractility in a rat model of ischemia: a correlative laser Doppler flowmetric and scanning electron microscopic study.
    Takahashi A; Park HK; Melgar MA; Alcocer L; Pinto J; Lenzi T; Diaz FG; Rafols JA
    Acta Neuropathol; 1997 Apr; 93(4):354-68. PubMed ID: 9113201
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Morphologic sites for regulating blood flow in the exocrine pancreas.
    Aharinejad S; MacDonald IC; Miksovsky A
    Microsc Res Tech; 1997 Jun 1-15; 37(5-6):434-49. PubMed ID: 9220422
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Metabolic models of microcirculatory regulation.
    Granger HJ; Goodman AH; Cook BH
    Fed Proc; 1975 Oct; 34(11):2025-30. PubMed ID: 1175795
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High-resolution in vivo imaging of the neurovascular unit during spreading depression.
    Chuquet J; Hollender L; Nimchinsky EA
    J Neurosci; 2007 Apr; 27(15):4036-44. PubMed ID: 17428981
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mathematical model of blood flow in a coronary capillary.
    Fibich G; Lanir Y; Liron N
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1829-40. PubMed ID: 8238597
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex.
    Farkas E; Bari F; Obrenovitch TP
    Neuroimage; 2010 Jun; 51(2):734-42. PubMed ID: 20188185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.