These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31959782)

  • 1. A Protein Interaction Information-based Generative Model for Enhancing Gene Clustering.
    Dutta P; Saha S; Pai S; Kumar A
    Sci Rep; 2020 Jan; 10(1):665. PubMed ID: 31959782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensembling of Gene Clusters Utilizing Deep Learning and Protein-Protein Interaction Information.
    Dutta P; Saha S; Chopra S; Miglani V
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2005-2016. PubMed ID: 31135367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel symmetry-based gene-gene dissimilarity measures utilizing Gene Ontology: Application in gene clustering.
    Acharya S; Saha S; Pradhan P
    Gene; 2018 Dec; 679():341-351. PubMed ID: 30184472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the go-based semantic similarity measures in multi-objective gene clustering algorithm performance.
    Parraga-Alava J; Inostroza-Ponta M
    J Bioinform Comput Biol; 2020 Dec; 18(6):2050038. PubMed ID: 33148094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge based cluster ensemble for cancer discovery from biomolecular data.
    Yu Z; Wongb HS; You J; Yang Q; Liao H
    IEEE Trans Nanobioscience; 2011 Jun; 10(2):76-85. PubMed ID: 21742574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double Selection Based Semi-Supervised Clustering Ensemble for Tumor Clustering from Gene Expression Profiles.
    Yu Z; Chen H; You J; Wong HS; Liu J; Li L; Han G
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):727-40. PubMed ID: 26356343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification.
    Mukhopadhyay A; Bandyopadhyay S; Maulik U
    PLoS One; 2010 Nov; 5(11):e13803. PubMed ID: 21103052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Factored Gene-Gene Proximity Measures Exploiting Biological Knowledge Extracted from Gene Ontology: Application in Gene Clustering.
    Acharya S; Saha S; Pradhan P
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):207-219. PubMed ID: 29994130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes.
    Datta S; Datta S
    BMC Bioinformatics; 2006 Aug; 7():397. PubMed ID: 16945146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal probabilistic generative models for time-course gene expression data and Gene Ontology (GO) tags.
    Gabbur P; Hoying J; Barnard K
    Math Biosci; 2015 Oct; 268():80-91. PubMed ID: 26292166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of expression values and protein interaction information using multi-objective optimization for improving gene clustering.
    Dutta P; Saha S
    Comput Biol Med; 2017 Oct; 89():31-43. PubMed ID: 28783536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial mixture model for tight clustering of gene expression time-course.
    Yuan Y; Li CT; Wilson R
    BMC Bioinformatics; 2008 Jun; 9():287. PubMed ID: 18564420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NetGen: a novel network-based probabilistic generative model for gene set functional enrichment analysis.
    Sun D; Liu Y; Zhang XS; Wu LY
    BMC Syst Biol; 2017 Sep; 11(Suppl 4):75. PubMed ID: 28950861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data.
    Yu Z; Chen H; You J; Liu J; Wong HS; Han G; Li L
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):887-901. PubMed ID: 26357330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised gene selection using biological knowledge : application in sample clustering.
    Acharya S; Saha S; Nikhil N
    BMC Bioinformatics; 2017 Nov; 18(1):513. PubMed ID: 29166852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring Unknown Biological Function by Integration of GO Annotations and Gene Expression Data.
    Leale G; Baya AE; Milone DH; Granitto PM; Stegmayer G
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):168-180. PubMed ID: 27723603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes.
    Maulik U; Mukhopadhyay A; Bandyopadhyay S
    BMC Bioinformatics; 2009 Jan; 10():27. PubMed ID: 19154590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.