BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31959850)

  • 1. Sea-Island-Like Morphology of CuNi Bimetallic Nanoparticles Uniformly Anchored on Single Layer Graphene Oxide as a Highly Efficient and Noble-Metal-Free Catalyst for Cyanation of Aryl Halides.
    Mayakrishnan G; Elayappan V; Kim IS; Chung IM
    Sci Rep; 2020 Jan; 10(1):677. PubMed ID: 31959850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO-supported Pd nanoparticle-catalyzed ligand- and additive-free cyanation of unactivated aryl halides using K4[Fe(CN)6].
    Chatterjee T; Dey R; Ranu BC
    J Org Chem; 2014 Jun; 79(12):5875-9. PubMed ID: 24856411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanation of aryl bromides with K4[Fe(CN)6] catalyzed by dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium, a molecular source of nanoparticles, and the reactions involved in the catalyst-deactivation processes.
    Gerber R; Oberholzer M; Frech CM
    Chemistry; 2012 Mar; 18(10):2978-86. PubMed ID: 22298440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified chitosan-zeolite supported Pd nanoparticles: A reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides.
    Sajjadi M; Nasrollahzadeh M; Ghafuri H; Baran T; Orooji Y; Baran NY; Shokouhimehr M
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1573-1585. PubMed ID: 35447267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemically Enabled, Ni-Catalyzed Cyanation of Aryl Halides.
    Yan Y; Sun J; Li G; Yang L; Zhang W; Cao R; Wang C; Xiao J; Xue D
    Org Lett; 2022 Apr; 24(12):2271-2275. PubMed ID: 35316067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild and efficient copper-catalyzed cyanation of aryl iodides and bromides.
    Cristau HJ; Ouali A; Spindler JF; Taillefer M
    Chemistry; 2005 Apr; 11(8):2483-92. PubMed ID: 15714537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ biogenic synthesis of Pd nanoparticles over reduced graphene oxide by using a plant extract (Thymbra spicata) and its catalytic evaluation towards cyanation of aryl halides.
    Veisi H; Tamoradi T; Karmakar B; Mohammadi P; Hemmati S
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109919. PubMed ID: 31499980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis of a palladium nanocatalyst anchored on magnetic lignin-chitosan beads for synthesis of biaryls and aryl halide cyanation.
    Baran T; Sargin I
    Int J Biol Macromol; 2020 Jul; 155():814-822. PubMed ID: 32251749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanation of aryl halides and Suzuki-Miyaura coupling reaction using palladium nanoparticles anchored on developed biodegradable microbeads.
    Baran T; Nasrollahzadeh M
    Int J Biol Macromol; 2020 Apr; 148():565-573. PubMed ID: 31958557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of a green and recyclable arginine-based palladium/CoFe
    HajimohamadzadehTorkambour S; Nejad MJ; Pazoki F; Karimi F; Heydari A
    RSC Adv; 2024 Apr; 14(20):14139-14151. PubMed ID: 38737408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of nanostructured palladium catalyst supported by chitosan/Co
    Çalışkan M; Baran T
    Int J Biol Macromol; 2021 Jul; 182():722-729. PubMed ID: 33862074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Pd Nanoparticles Embedded C@Fe3O4 Core-Shell Hybrid Nanospheres: An Efficient Catalyst for Cyanation in Aryl Halides.
    Suresh Kumar B; Amali AJ; Pitchumani K
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22907-17. PubMed ID: 26419954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient silica coated CuNi bimetallic nanocatalyst from reverse microemulsion.
    Ge Y; Gao T; Wang C; Shah ZH; Lu R; Zhang S
    J Colloid Interface Sci; 2017 Apr; 491():123-132. PubMed ID: 28024189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of graphene oxide (GO)-anchored Pd/Cu bimetallic nanoparticles using
    Sultana S; Mech SD; Hussain FL; Pahari P; Borah G; Gogoi PK
    RSC Adv; 2020 Jun; 10(39):23108-23120. PubMed ID: 35520350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.
    Fang H; Wen M; Chen H; Wu Q; Li W
    Nanoscale; 2016 Jan; 8(1):536-42. PubMed ID: 26646949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CuNi Alloy-Carbon Layer Core-Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature.
    Zhou Z; Ng YH; Xu S; Yang S; Gao Q; Cai X; Liao J; Fang Y; Zhang S
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37299-37307. PubMed ID: 34324293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green synthesis of Pd nanoparticles mediated by Euphorbia thymifolia L. leaf extract: Catalytic activity for cyanation of aryl iodides under ligand-free conditions.
    Nasrollahzadeh M; Sajadi SM
    J Colloid Interface Sci; 2016 May; 469():191-195. PubMed ID: 26890384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pd NPs@Fe
    Baran T
    Carbohydr Polym; 2020 Jun; 237():116105. PubMed ID: 32241432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pd-Metalated Conjugated Nanoporous Polycarbazoles for Additive-Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation.
    Ding S; Tian C; Zhu X; Abney CW; Tian Z; Chen B; Li M; Jiang DE; Zhang N; Dai S
    ChemSusChem; 2017 Jun; 10(11):2348-2351. PubMed ID: 28333410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general, practical palladium-catalyzed cyanation of (hetero)aryl chlorides and bromides.
    Senecal TD; Shu W; Buchwald SL
    Angew Chem Int Ed Engl; 2013 Sep; 52(38):10035-9. PubMed ID: 23934947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.