BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31960105)

  • 1. Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults.
    Rapos V; Cinelli M
    Exp Brain Res; 2020 Feb; 238(2):513-523. PubMed ID: 31960105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children.
    Berard JR; Vallis LA
    Exp Brain Res; 2006 Oct; 175(1):21-31. PubMed ID: 16761138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in avoidance strategies when negotiating single and multiple obstacles.
    Lowrey CR; Watson A; Vallis LA
    Exp Brain Res; 2007 Sep; 182(3):289-99. PubMed ID: 17551718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.
    Novak AC; Deshpande N
    Hum Mov Sci; 2014 Jun; 35():121-30. PubMed ID: 24746603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distracting visuospatial attention while approaching an obstacle reduces the toe-obstacle clearance.
    Lo OY; van Donkelaar P; Chou LS
    Exp Brain Res; 2015 Apr; 233(4):1137-44. PubMed ID: 25567089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic flow contribution to locomotion adjustments in obstacle avoidance.
    Pinheiro Menuchi MR; Bucken Gobbi LT
    Motor Control; 2012 Oct; 16(4):506-20. PubMed ID: 23162065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking combined with reach-to-grasp while crossing obstacles at different distances.
    Rinaldi NM; Lim J; Hamill J; Van Emmerik R; Moraes R
    Gait Posture; 2018 Sep; 65():1-7. PubMed ID: 30558913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of object height and visual information on the control of obstacle crossing during locomotion in healthy older adults.
    Kunimune S; Okada S
    Gait Posture; 2017 Jun; 55():126-130. PubMed ID: 28437760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the cognitive demands required for young adults to adjust online obstacle avoidance strategies.
    Pitman J; Sutherland K; Vallis LA
    Exp Brain Res; 2021 Mar; 239(3):1009-1019. PubMed ID: 33507351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balance problems during obstacle crossing in children with Developmental Coordination Disorder.
    Deconinck FJ; Savelsbergh GJ; De Clercq D; Lenoir M
    Gait Posture; 2010 Jul; 32(3):327-31. PubMed ID: 20580557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.
    Kim A; Kretch KS; Zhou Z; Finley JM
    J Neurophysiol; 2018 Aug; 120(2):839-847. PubMed ID: 29742030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of vision and its age-related changes to postural stability in obstacle crossing during locomotion.
    Kunimune S; Okada S
    Gait Posture; 2019 May; 70():284-288. PubMed ID: 30925352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obstacle crossing in people with Parkinson's disease: foot clearance and spatiotemporal deficits.
    Galna B; Murphy AT; Morris ME
    Hum Mov Sci; 2010 Oct; 29(5):843-52. PubMed ID: 19962206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do characteristics of a stationary obstacle lead to adjustments in obstacle stepping strategies?
    Worden TA; De Jong AF; Vallis LA
    Gait Posture; 2016 Jan; 43():38-41. PubMed ID: 26669949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body-foot geometries as revealed by perturbed obstacle position with different time constraints.
    Dugas LP; Bouyer LJ; McFadyen BJ
    Exp Brain Res; 2018 Mar; 236(3):711-720. PubMed ID: 29299643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze diversion affects cognitive and motor performance in young adults when stepping over obstacles.
    Cho H; Romine NL; Barbieri FA; Rietdyk S
    Gait Posture; 2019 Sep; 73():273-278. PubMed ID: 31394370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does visual manipulation affect obstacle avoidance strategies used by athletes?
    Bijman MP; Fisher JJ; Vallis LA
    J Sports Sci; 2016; 34(10):915-22. PubMed ID: 26291383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.