These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31960137)

  • 1. Phase resetting and intermittent control at the edge of stability in a simple biped model generates 1/f-like gait cycle variability.
    Fu C; Suzuki Y; Morasso P; Nomura T
    Biol Cybern; 2020 Feb; 114(1):95-111. PubMed ID: 31960137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intermittent control model of flexible human gait using a stable manifold of saddle-type unstable limit cycle dynamics.
    Fu C; Suzuki Y; Kiyono K; Morasso P; Nomura T
    J R Soc Interface; 2014 Dec; 11(101):20140958. PubMed ID: 25339687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Phase Resetting to Statistical Persistence in Stride Intervals: A Modeling Study.
    Okamoto K; Obayashi I; Kokubu H; Senda K; Tsuchiya K; Aoi S
    Front Neural Circuits; 2022; 16():836121. PubMed ID: 35814485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of simulated sensorimotor noise on kinematic variability and stability of a biped walking model.
    Mehdizadeh S; Glazier PS
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1097-1103. PubMed ID: 33426927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stumbling with optimal phase reset during gait can prevent a humanoid from falling.
    Nakanishi M; Nomura T; Sato S
    Biol Cybern; 2006 Nov; 95(5):503-15. PubMed ID: 16969676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
    Ferreira JP; Crisóstomo MM; Coimbra AP
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified Phase Variables of Relative Degree Two for Human Locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6262-6267. PubMed ID: 28261013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying dynamic characteristics of human walking for comprehensive gait cycle.
    Mummolo C; Mangialardi L; Kim JH
    J Biomech Eng; 2013 Sep; 135(9):91006. PubMed ID: 23775488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of variable-damping control for prosthetic knee based on a simulated biped.
    Zhao J; Berns K; de Souza Baptista R; Bo AP
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650364. PubMed ID: 24187183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic stability and phase resetting during biped gait.
    Nomura T; Kawa K; Suzuki Y; Nakanishi M; Yamasaki T
    Chaos; 2009 Jun; 19(2):026103. PubMed ID: 19566263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking-Implications for Exoskeletons.
    Nataraj R; van den Bogert AJ
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28787476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sampling frequency on fractal fluctuations during treadmill walking.
    Marmelat V; Duncan A; Meltz S
    PLoS One; 2019; 14(11):e0218908. PubMed ID: 31697684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphase and Multivariable Linear Controllers That Account for the Joint Torques in Normal Human Walking.
    Altinkaynak ES; Roig G; Braun DJ
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1573-1584. PubMed ID: 31502961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():91-97. PubMed ID: 27380204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanics of functional asymmetry in bipedal walking.
    Gregg RD; Dhaher YY; Degani A; Lynch KM
    IEEE Trans Biomed Eng; 2012 May; 59(5):1310-8. PubMed ID: 22328168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and control of a frontal four-link biped system.
    Iqbal K; Hemami H; Simon S
    IEEE Trans Biomed Eng; 1993 Oct; 40(10):1007-18. PubMed ID: 8294125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.