These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 31960244)
1. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. Wang XD; Lu YC; Xiong XH; Yuan Y; Lu LX; Liu YJ; Mao JH; Xiao WW Environ Sci Pollut Res Int; 2020 Apr; 27(10):11246-11259. PubMed ID: 31960244 [TBL] [Abstract][Full Text] [Related]
2. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. Pan CG; Peng FJ; Shi WJ; Hu LX; Wei XD; Ying GG Ecotoxicol Environ Saf; 2018 Feb; 148():393-401. PubMed ID: 29100157 [TBL] [Abstract][Full Text] [Related]
3. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Coogan MA; Edziyie RE; La Point TW; Venables BJ Chemosphere; 2007 May; 67(10):1911-8. PubMed ID: 17275881 [TBL] [Abstract][Full Text] [Related]
4. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. González-Pleiter M; Rioboo C; Reguera M; Abreu I; Leganés F; Cid Á; Fernández-Piñas F Aquat Toxicol; 2017 May; 186():50-66. PubMed ID: 28249228 [TBL] [Abstract][Full Text] [Related]
5. Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Capdevielle M; Van Egmond R; Whelan M; Versteeg D; Hofmann-Kamensky M; Inauen J; Cunningham V; Woltering D Integr Environ Assess Manag; 2008 Jan; 4(1):15-23. PubMed ID: 18260205 [TBL] [Abstract][Full Text] [Related]
6. [Occurrence, degradation and potential ecological risks of triclosan in environment.]. Zhang LN; Gong XS; An J; Wei SH Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):3139-3146. PubMed ID: 30411592 [TBL] [Abstract][Full Text] [Related]
7. Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification. Maulvault AL; Camacho C; Barbosa V; Alves R; Anacleto P; Cunha SC; Fernandes JO; Pousão-Ferreira P; Paula JR; Rosa R; Diniz M; Marques A Environ Pollut; 2019 Feb; 245():427-442. PubMed ID: 30458373 [TBL] [Abstract][Full Text] [Related]
8. Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a North Texas, USA, stream affected by wastewater treatment plant runoff. Coogan MA; La Point TW Environ Toxicol Chem; 2008 Aug; 27(8):1788-93. PubMed ID: 18380516 [TBL] [Abstract][Full Text] [Related]
9. The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii. Zhao F; Zhang D; Xu C; Liu J; Shen C Ecotoxicol Environ Saf; 2020 Jun; 196():110552. PubMed ID: 32259759 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. Ding T; Lin K; Yang M; Bao L; Li J; Yang B; Gan J J Hazard Mater; 2018 Feb; 344():200-209. PubMed ID: 29035714 [TBL] [Abstract][Full Text] [Related]
11. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Ying GG; Kookana RS Environ Int; 2007 Feb; 33(2):199-205. PubMed ID: 17055058 [TBL] [Abstract][Full Text] [Related]
12. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid. Sun K; Kang F; Waigi MG; Gao Y; Huang Q Environ Pollut; 2017 Jan; 220(Pt A):105-111. PubMed ID: 27640762 [TBL] [Abstract][Full Text] [Related]
13. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. Kumar S; Paul T; Shukla SP; Kumar K; Karmakar S; Bera KK; Bhushan Kumar C Environ Pollut; 2021 Oct; 286():117569. PubMed ID: 34438492 [TBL] [Abstract][Full Text] [Related]
14. A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano-polymers. Lu YC; Mao JH; Zhang W; Wang C; Cao M; Wang XD; Wang KY; Xiong XH Chemosphere; 2020 Jan; 238():124640. PubMed ID: 31524609 [TBL] [Abstract][Full Text] [Related]
15. Bioaccumulation and Biotransformation of Triclosan and Galaxolide in the Freshwater Oligochaete Limnodrilus hoffmeisteri in a Water/Sediment Microcosm. Peng FJ; Ying GG; Pan CG; Selck H; Salvito D; Van den Brink PJ Environ Sci Technol; 2018 Aug; 52(15):8390-8398. PubMed ID: 30010330 [TBL] [Abstract][Full Text] [Related]
16. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Bedoux G; Roig B; Thomas O; Dupont V; Le Bot B Environ Sci Pollut Res Int; 2012 May; 19(4):1044-65. PubMed ID: 22057832 [TBL] [Abstract][Full Text] [Related]
17. Toxicity, Biodegradation, and Metabolic Fate of Organophosphorus Pesticide Trichlorfon on the Freshwater Algae Wan L; Wu Y; Ding H; Zhang W J Agric Food Chem; 2020 Feb; 68(6):1645-1653. PubMed ID: 31972072 [TBL] [Abstract][Full Text] [Related]
18. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms. Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380 [TBL] [Abstract][Full Text] [Related]
19. Efficient removal of triclosan via peroxymonosulfate activated by a ppb level dosage of Co(II) in water: Reaction kinetics, mechanisms and detoxification. Peng J; Zhang C; Zhang Y; Shao S; Wang P; Liu G; Dong H; Liu D; Shi J; Cao Z; Liu H; Gao S Ecotoxicol Environ Saf; 2020 Jul; 198():110676. PubMed ID: 32361496 [TBL] [Abstract][Full Text] [Related]
20. The pH-dependent toxicity of triclosan on developing zebrafish (Danio rerio) embryos using metabolomics. Fu J; Bae S Aquat Toxicol; 2020 Sep; 226():105560. PubMed ID: 32659603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]