BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31960245)

  • 1. Heavy metal bioaccumulation and morphological changes in Vachellia campechiana (Fabaceae) reveal its potential for phytoextraction of Cr, Cu, and Pb in mine tailings.
    Santoyo-Martínez M; Mussali-Galante P; Hernández-Plata I; Valencia-Cuevas L; Flores-Morales A; Ortiz-Hernández L; Flores-Trujillo K; Ramos-Quintana F; Tovar-Sánchez E
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):11260-11276. PubMed ID: 31960245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioaccumulation potential of heavy metals by Gliricidia sepium (Fabaceae) in mine tailings.
    Mussali-Galante P; Santoyo-Martínez M; Castrejón-Godínez ML; Breton-Deval L; Rodríguez-Solis A; Valencia-Cuevas L; Tovar-Sánchez E
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38982-38999. PubMed ID: 36595178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines.
    Castañeda-Espinoza J; Salinas-Sánchez DO; Mussali-Galante P; Castrejón-Godínez ML; Rodríguez A; González-Cortazar M; Zamilpa-Álvarez A; Tovar-Sánchez E
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):2509-2529. PubMed ID: 35931856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological, physiological, and genotoxic effects of heavy metal bioaccumulation in Prosopis laevigata reveal its potential for phytoremediation.
    Muro-González DA; Mussali-Galante P; Valencia-Cuevas L; Flores-Trujillo K; Tovar-Sánchez E
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40187-40204. PubMed ID: 32661966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bioaccumulation and Translocation Characteristics of Heavy Metals in a Soil-Maize System in Reclaimed Land and Surrounding Areas of Typical Vanadium-Titanium Magnetite Tailings].
    Sun HY; Wei XF; Sun XM; Jia FC; Li DJ; Li J
    Huan Jing Ke Xue; 2021 Mar; 42(3):1166-1176. PubMed ID: 33742913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China.
    Wu B; Peng H; Sheng M; Luo H; Wang X; Zhang R; Xu F; Xu H
    Ecotoxicol Environ Saf; 2021 Sep; 220():112368. PubMed ID: 34082243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential use of grapevine cv Askari for heavy metal phytoremediation purposes at greenhouse scale.
    Mirzaei M; Verrelst J; Bakhtiari AR; Marofi S
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12447-12458. PubMed ID: 33079348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between heavy metals and other mineral elements from soil to medicinal plant Fengdan (Paeonia ostii) in a copper mining area, China.
    Shen Z; Chen Y; Xu D; Li L; Zhu Y
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):33743-33752. PubMed ID: 32533491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites.
    Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L
    Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecotoxicological effects of heavy metal bioaccumulation in two trophic levels.
    Esteves-Aguilar J; Mussali-Galante P; Valencia-Cuevas L; García-Cigarrero AA; Rodríguez A; Castrejón-Godínez ML; Tovar-Sánchez E
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49840-49855. PubMed ID: 36781676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wild flora of mine tailings: perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico.
    Sánchez-López AS; Del Carmen A González-Chávez M; Carrillo-González R; Vangronsveld J; Díaz-Garduño M
    Int J Phytoremediation; 2015; 17(1-6):476-84. PubMed ID: 25495938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.
    Sun Z; Xie X; Wang P; Hu Y; Cheng H
    Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term effects of phytoextraction by a poplar clone on the concentration, fractionation, and transportation of heavy metals in mine tailings.
    Suo Y; Tang N; Li H; Corti G; Jiang L; Huang Z; Zhang Z; Huang J; Wu Z; Feng C; Zhang X
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47528-47539. PubMed ID: 33895954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps).
    Pavoni E; Petranich E; Adami G; Baracchini E; Crosera M; Emili A; Lenaz D; Higueras P; Covelli S
    J Environ Manage; 2017 Jan; 186(Pt 2):214-224. PubMed ID: 27484741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China.
    Liu K; Zhang H; Liu Y; Li Y; Yu F
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19933-19945. PubMed ID: 32232756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings.
    Munir MAM; Liu G; Yousaf B; Mian MM; Ali MU; Ahmed R; Cheema AI; Naushad M
    Ecotoxicol Environ Saf; 2020 Mar; 191():110244. PubMed ID: 32004946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assisted Phytostabilization of Mine-Tailings with
    Ramírez-Zamora J; Mussali-Galante P; Rodríguez A; Castrejón-Godínez ML; Valencia-Cuevas L; Tovar-Sánchez E
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.