These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31960365)
1. Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin. Shen Y; Zhou X; Xu Y Appl Biochem Biotechnol; 2020 Jul; 191(3):1072-1083. PubMed ID: 31960365 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Mao X; Zhang B; Zhao C; Lin J; Wei D Microb Cell Fact; 2022 Mar; 21(1):35. PubMed ID: 35264166 [TBL] [Abstract][Full Text] [Related]
3. Screening of Gluconobacter oxydans in xylonic acid fermentation for tolerance of the inhibitors formed dilute acid pretreatment. Jiang W; Dai L; Tan X; Zhou X; Xu Y Bioprocess Biosyst Eng; 2023 Apr; 46(4):589-597. PubMed ID: 36670301 [TBL] [Abstract][Full Text] [Related]
4. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst. Zhou X; Han J; Xu Y Bioresour Technol; 2019 Jun; 282():378-383. PubMed ID: 30884457 [TBL] [Abstract][Full Text] [Related]
5. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans. Zhang H; Han X; Wei C; Bao J Bioresour Technol; 2017 Jan; 224():573-580. PubMed ID: 27955866 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans. Zhou X; Xu Y; Yu S Appl Biochem Biotechnol; 2016 Jan; 178(1):1-8. PubMed ID: 26378011 [TBL] [Abstract][Full Text] [Related]
7. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis. Zhang H; Liu G; Zhang J; Bao J Bioresour Technol; 2016 Nov; 219():123-131. PubMed ID: 27484668 [TBL] [Abstract][Full Text] [Related]
8. Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique. Zhou X; Zhou X; Xu Y Bioresour Technol; 2017 Nov; 244(Pt 1):1137-1141. PubMed ID: 28863996 [TBL] [Abstract][Full Text] [Related]
9. Effects of Inhibitors on the Transcriptional Profiling of Miao Y; Shen Y; Xu Y Front Microbiol; 2017; 8():716. PubMed ID: 28487685 [TBL] [Abstract][Full Text] [Related]
10. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. Han J; Hua X; Zhou X; Xu B; Wang H; Huang G; Xu Y Bioresour Technol; 2021 Aug; 333():125157. PubMed ID: 33878501 [TBL] [Abstract][Full Text] [Related]
11. Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans. Zhou X; Zhou X; Huang L; Cao R; Xu Y Bioresour Technol; 2017 Nov; 243():855-859. PubMed ID: 28724257 [TBL] [Abstract][Full Text] [Related]
12. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Chun BW; Dair B; Macuch PJ; Wiebe D; Porteneuve C; Jeknavorian A Appl Biochem Biotechnol; 2006; 129-132():645-58. PubMed ID: 16915676 [TBL] [Abstract][Full Text] [Related]
13. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate. Zhou X; Zhou X; Tang X; Xu Y Bioresour Technol; 2018 Aug; 261():288-293. PubMed ID: 29677656 [TBL] [Abstract][Full Text] [Related]
14. Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Dai L; Jiang W; Zhou X; Xu Y Bioresour Technol; 2020 Nov; 316():123944. PubMed ID: 32769000 [TBL] [Abstract][Full Text] [Related]
15. Kinetic modeling of xylonic acid production by Gluconobacter oxydans: effects of hydrodynamic conditions. Liu X; Ding C; He T; Zhu Y; Sun L; Xu C; Gu X Bioprocess Biosyst Eng; 2023 Jun; 46(6):829-837. PubMed ID: 36952003 [TBL] [Abstract][Full Text] [Related]
16. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Chun BW; Dair B; Macuch PJ; Wiebe D; Porteneuve C; Jeknavorian A Appl Biochem Biotechnol; 2006 Mar; 131(1-3):645-58. PubMed ID: 18563642 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695 [TBL] [Abstract][Full Text] [Related]
18. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Zhou P; Yao R; Zhang H; Bao J Biotechnol Bioeng; 2019 Sep; 116(9):2191-2199. PubMed ID: 31081135 [TBL] [Abstract][Full Text] [Related]
19. A two-step bioprocessing strategy in pentonic acids production from lignocellulosic pre-hydrolysate. Zhou X; Huang L; Xu Y; Yu S Bioprocess Biosyst Eng; 2017 Nov; 40(11):1581-1587. PubMed ID: 28721445 [TBL] [Abstract][Full Text] [Related]
20. Draft Genome Sequence of Gluconobacter oxydans NL71, a Strain That Efficiently Biocatalyzes Xylose to Xylonic Acid at a High Concentration. Miao Y; Zhou X; Xu Y; Yu S Genome Announc; 2015 Jun; 3(3):. PubMed ID: 26089417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]