BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31960714)

  • 1. Phytoremediation and detoxification of xenobiotics in plants: herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review.
    Del Buono D; Terzano R; Panfili I; Bartucca ML
    Int J Phytoremediation; 2020; 22(8):789-803. PubMed ID: 31960714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.
    Abhilash PC; Jamil S; Singh N
    Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of aquatic species and safeners improves the remediation of copper polluted water.
    Panfili I; Bartucca ML; Ballerini E; Del Buono D
    Sci Total Environ; 2017 Dec; 601-602():1263-1270. PubMed ID: 28605844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential induction of glutathione transferases and glucosyltransferases in wheat, maize and Arabidopsis thaliana by herbicide safeners.
    Edwards R; Del Buono D; Fordham M; Skipsey M; Brazier M; Dixon DP; Cummings I
    Z Naturforsch C J Biosci; 2005; 60(3-4):307-16. PubMed ID: 15948600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of saltmarsh halophytes for phytoremediation of metals and persistent organic pollutants: An Australian perspective.
    Roe RAL; MacFarlane GR
    Mar Pollut Bull; 2022 Jul; 180():113811. PubMed ID: 35667258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in development of transgenic plants for remediation of xenobiotic pollutants.
    Eapen S; Singh S; D'Souza SF
    Biotechnol Adv; 2007; 25(5):442-51. PubMed ID: 17553651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships.
    Feng NX; Yu J; Zhao HM; Cheng YT; Mo CH; Cai QY; Li YW; Li H; Wong MH
    Sci Total Environ; 2017 Apr; 583():352-368. PubMed ID: 28117167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic rice plants expressing human p450 genes involved in xenobiotic metabolism for phytoremediation.
    Kawahigashi H; Hirose S; Ohkawa H; Ohkawa Y
    J Mol Microbiol Biotechnol; 2008; 15(2-3):212-9. PubMed ID: 18685273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herbicide safeners: uses, limitations, metabolism, and mechanisms of action.
    Abu-Qare AW; Duncan HJ
    Chemosphere; 2002 Sep; 48(9):965-74. PubMed ID: 12222792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives.
    Al-Thani RF; Yasseen BT
    Environ Pollut; 2020 Apr; 259():113694. PubMed ID: 31887591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.
    Obermeier M; Schröder CA; Helmreich B; Schröder P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation--a novel and promising approach for environmental clean-up.
    Suresh B; Ravishankar GA
    Crit Rev Biotechnol; 2004; 24(2-3):97-124. PubMed ID: 15493528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research Progress on the Remediation Technology of Herbicide Contamination in Agricultural Soils].
    Hu FY; An J; Wang BY; Xu MK; Zhang HW; Wei SH
    Huan Jing Ke Xue; 2023 Apr; 44(4):2384-2394. PubMed ID: 37040987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption kinetics of the herbicide safeners, benoxacor and furilazole, to activated carbon and agricultural soils.
    Acharya SP; Johnson J; Weidhaas J
    J Environ Sci (China); 2020 Mar; 89():23-34. PubMed ID: 31892395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic-enhanced phytoremediation of soils: status and opportunities.
    Cameselle C; Chirakkara RA; Reddy KR
    Chemosphere; 2013 Oct; 93(4):626-36. PubMed ID: 23835413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Progress on the Action Mechanism of Herbicide Safeners: A Review.
    Zhao Y; Ye F; Fu Y
    J Agric Food Chem; 2023 Mar; 71(8):3639-3650. PubMed ID: 36794646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review.
    Hussain I; Aleti G; Naidu R; Puschenreiter M; Mahmood Q; Rahman MM; Wang F; Shaheen S; Syed JH; Reichenauer TG
    Sci Total Environ; 2018 Jul; 628-629():1582-1599. PubMed ID: 30045575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic plants for phytoremediation of herbicides.
    Kawahigashi H
    Curr Opin Biotechnol; 2009 Apr; 20(2):225-30. PubMed ID: 19269160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.