These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31960721)

  • 1. Weighted Mostar indices as measures of molecular peripheral shapes with applications to graphene, graphyne and graphdiyne nanoribbons.
    Arockiaraj M; Clement J; Tratnik N; Mushtaq S; Balasubramanian K
    SAR QSAR Environ Res; 2020 Mar; 31(3):187-208. PubMed ID: 31960721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On Certain Topological Indices of Three-Layered Single-Walled Titania Nanosheets.
    Arockiaraj M; Liu JB; Arulperumjothi M; Prabhu S
    Comb Chem High Throughput Screen; 2022; 25(3):483-495. PubMed ID: 33109055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neighbourhood Sum Degree-Based Indices and Entropy Measures for Certain Family of Graphene Molecules.
    Yang J; Konsalraj J; Raja S AA
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced reverse degree-based topological indices of graphyne and graphdiyne nanoribbons with applications in chemical analysis.
    Zaman S; Hakami KH; Rasheed S; Agama FT
    Sci Rep; 2024 Jan; 14(1):547. PubMed ID: 38177204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of graphyne on structural and dynamical properties of calmodulin.
    Feng M; Bell DR; Luo J; Zhou R
    Phys Chem Chem Phys; 2017 Apr; 19(15):10187-10195. PubMed ID: 28374026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene nanoribbons: A state-of-the-art in health care.
    Shende P; Pathan N
    Int J Pharm; 2021 Feb; 595():120269. PubMed ID: 33486033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Zagreb coindices and Mostar index of [Formula: see text] nanotubes.
    Imran M; Malik MA; Aqib M; Aslam GIH; Ali A
    Sci Rep; 2023 Aug; 13(1):13672. PubMed ID: 37607998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative differential resistance in oxidized zigzag graphene nanoribbons.
    Wang M; Li CM
    Phys Chem Chem Phys; 2011 Jan; 13(4):1413-8. PubMed ID: 21152514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O.
    Asai M; Ohba T; Iwanaga T; Kanoh H; Endo M; Campos-Delgado J; Terrones M; Nakai K; Kaneko K
    J Am Chem Soc; 2011 Sep; 133(38):14880-3. PubMed ID: 21870827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene nanoribbons initiated from molecularly derived seeds.
    Way AJ; Jacobberger RM; Guisinger NP; Saraswat V; Zheng X; Suresh A; Dwyer JH; Gopalan P; Arnold MS
    Nat Commun; 2022 May; 13(1):2992. PubMed ID: 35637229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Bottom-Up Preparation of Graphene Nanoribbons by Mild Suzuki-Miyaura Polymerization of Simple Triaryl Monomers.
    Li G; Yoon KY; Zhong X; Zhu X; Dong G
    Chemistry; 2016 Jun; 22(27):9116-20. PubMed ID: 27159538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanographene and Graphene Nanoribbon Synthesis via Alkyne Benzannulations.
    Senese AD; Chalifoux WA
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30598009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications.
    Kauffman DR; Star A
    Analyst; 2010 Nov; 135(11):2790-7. PubMed ID: 20733998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.
    Banks CE; Davies TJ; Wildgoose GG; Compton RG
    Chem Commun (Camb); 2005 Feb; (7):829-41. PubMed ID: 15700054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weighted Mostar invariants of chemical compounds: An analysis of structural stability.
    Raza Z; Ul Huda N; Yasmeen F; Ali K; Akhter S; Lin Y
    Heliyon; 2024 May; 10(10):e30751. PubMed ID: 38784547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons.
    Abbas AN; Liu G; Narita A; Orosco M; Feng X; Müllen K; Zhou C
    J Am Chem Soc; 2014 May; 136(21):7555-8. PubMed ID: 24831246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-related nanomaterials: tuning properties by functionalization.
    Tang Q; Zhou Z; Chen Z
    Nanoscale; 2013 Jun; 5(11):4541-83. PubMed ID: 23443470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming graphene nanoribbons into nanotubes by use of point defects.
    Sgouros A; Sigalas MM; Papagelis K; Kalosakas G
    J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.