These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31960721)

  • 21. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.
    Hirsch A
    Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752
    [No Abstract]   [Full Text] [Related]  

  • 22. Edge Mostar Indices of Cacti Graph With Fixed Cycles.
    Yasmeen F; Akhter S; Ali K; Rizvi STR
    Front Chem; 2021; 9():693885. PubMed ID: 34307297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine.
    Wujcik EK; Monty CN
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(3):233-49. PubMed ID: 23450525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.
    Bilić A; Sanvito S
    J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From Cyclo[18]carbon to the Novel Nanostructures-Theoretical Predictions.
    Brzyska A; Panczyk T; Wolinski K
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons.
    Gizzatov A; Keshishian V; Guven A; Dimiev AM; Qu F; Muthupillai R; Decuzzi P; Bryant RG; Tour JM; Wilson LJ
    Nanoscale; 2014 Mar; 6(6):3059-63. PubMed ID: 24504060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene: Synthesis, bio-applications, and properties.
    Abbasi E; Akbarzadeh A; Kouhi M; Milani M
    Artif Cells Nanomed Biotechnol; 2016; 44(1):150-6. PubMed ID: 24978443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High sensitivity of graphdiyne nanoflake toward detection of phosgene, thiophosgene and phosogenoxime; a first-principles study.
    Khan S; Sajid H; Ayub K; Mahmood T
    J Mol Graph Model; 2020 Nov; 100():107658. PubMed ID: 32712553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets.
    Wong CH; Pumera M
    Phys Chem Chem Phys; 2013 May; 15(20):7755-9. PubMed ID: 23598744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic properties of a graphene antidot in magnetic fields.
    Park PS; Kim SC; Yang SR
    J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.
    Zhu G; Yi Y; Han Z; Wang K; Wu X
    Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic response of conductance peak structure in junction-confined graphene nanoribbons.
    Yamamoto M; Wakabayashi K
    Nanoscale; 2012 Feb; 4(4):1138-45. PubMed ID: 22080960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects.
    Areshkin DA; Gunlycke D; White CT
    Nano Lett; 2007 Jan; 7(1):204-10. PubMed ID: 17212465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology.
    Peng Q; Dearden AK; Crean J; Han L; Liu S; Wen X; De S
    Nanotechnol Sci Appl; 2014; 7():1-29. PubMed ID: 24808721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors.
    Jiang H
    Small; 2011 Sep; 7(17):2413-27. PubMed ID: 21638780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 38. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.
    Chernov AI; Fedotov PV; Talyzin AV; Suarez Lopez I; Anoshkin IV; Nasibulin AG; Kauppinen EI; Obraztsova ED
    ACS Nano; 2013 Jul; 7(7):6346-53. PubMed ID: 23795665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective-tensional-strain-driven bandgap modulations in helical graphene nanoribbons.
    Zhang DB; Dumitrică T
    Small; 2011 Apr; 7(8):1023-7. PubMed ID: 21456098
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.