These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31960721)

  • 41. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.
    Dimiev AM; Gizzatov A; Wilson LJ; Tour JM
    Chem Commun (Camb); 2013 Apr; 49(26):2613-5. PubMed ID: 23435853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.
    Zhang Y; Petibone D; Xu Y; Mahmood M; Karmakar A; Casciano D; Ali S; Biris AS
    Drug Metab Rev; 2014 May; 46(2):232-46. PubMed ID: 24506522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber.
    Wang L; Huang Y; Li C; Chen J; Sun X
    Phys Chem Chem Phys; 2015 Jan; 17(3):2228-34. PubMed ID: 25485522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetism of substitutional Fe impurities in graphene nanoribbons.
    Longo RC; Carrete J; Gallego LJ
    J Chem Phys; 2011 Jan; 134(2):024704. PubMed ID: 21241143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphyne and graphdiyne nanoribbons: from their structures and properties to potential applications.
    Liu Q; Wang X; Yu J; Wang J
    Phys Chem Chem Phys; 2024 Jan; 26(3):1541-1563. PubMed ID: 38165768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene and Graphene Analogs toward Optical, Electronic, Spintronic, Green-Chemical, Energy-Material, Sensing, and Medical Applications.
    Rezapour MR; Myung CW; Yun J; Ghassami A; Li N; Yu SU; Hajibabaei A; Park Y; Kim KS
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24393-24406. PubMed ID: 28678466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational Studies on Diverse Characterizations of Molecular Descriptors for Graphyne Nanoribbon Structures.
    Raza MA; Mahmood MK; Imran M; Tchier F; Ahmad D; Masood MK
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764373
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graphene synthesis: Nanoribbons from the bottom-up.
    Hartley CS
    Nat Chem; 2014 Feb; 6(2):91-2. PubMed ID: 24451581
    [No Abstract]   [Full Text] [Related]  

  • 50. Binding of nucleobases with graphene and carbon nanotube: a review of computational studies.
    Chehel Amirani M; Tang T
    J Biomol Struct Dyn; 2015; 33(7):1567-97. PubMed ID: 25118044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems.
    Huang YX; Liu XW; Xie JF; Sheng GP; Wang GY; Zhang YY; Xu AW; Yu HQ
    Chem Commun (Camb); 2011 May; 47(20):5795-7. PubMed ID: 21494723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Magnetic response of zigzag nanoribbons under electric fields.
    Culchac FJ; Capaz RB; Costa AT; Latgé A
    J Phys Condens Matter; 2014 May; 26(21):216002. PubMed ID: 24806106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Safety considerations for graphene: lessons learnt from carbon nanotubes.
    Bussy C; Ali-Boucetta H; Kostarelos K
    Acc Chem Res; 2013 Mar; 46(3):692-701. PubMed ID: 23163827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Orbitally Matched Edge-Doping in Graphene Nanoribbons.
    Durr RA; Haberer D; Lee YL; Blackwell R; Kalayjian AM; Marangoni T; Ihm J; Louie SG; Fischer FR
    J Am Chem Soc; 2018 Jan; 140(2):807-813. PubMed ID: 29243927
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetism of solids resulting from spin polarization of p orbitals.
    Volnianska O; Boguslawski P
    J Phys Condens Matter; 2010 Feb; 22(7):073202. PubMed ID: 21386378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resonant tunneling through S- and U-shaped graphene nanoribbons.
    Zhang ZZ; Wu ZH; Chang K; Peeters FM
    Nanotechnology; 2009 Oct; 20(41):415203. PubMed ID: 19755722
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Graphene-based nanomaterials as molecular imaging agents.
    Garg B; Sung CH; Ling YC
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(6):737-58. PubMed ID: 25857851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism.
    Xu J; Cao Z; Zhang Y; Yuan Z; Lou Z; Xu X; Wang X
    Chemosphere; 2018 Mar; 195():351-364. PubMed ID: 29272803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.