These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31960763)

  • 1. Age-related Differences in Sensorimotor Transformations for Visual and/or Somatosensory Targets: Planning or Execution?
    Goodman R; Manson GA; Tremblay L
    Exp Aging Res; 2020; 46(2):128-138. PubMed ID: 31960763
    [No Abstract]   [Full Text] [Related]  

  • 2. Older adults rely on somatosensory information from the effector limb in the planning of discrete movements to somatosensory cues.
    Goodman R; Tremblay L
    Exp Gerontol; 2021 Jul; 150():111310. PubMed ID: 33741455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid online corrections for upper limb reaches to perturbed somatosensory targets: evidence for non-visual sensorimotor transformation processes.
    Manson GA; Blouin J; Kumawat AS; Crainic VA; Tremblay L
    Exp Brain Res; 2019 Mar; 237(3):839-853. PubMed ID: 30610265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory cues for somatosensory targets invoke visuomotor transformations: Behavioral and electrophysiological evidence.
    Manson GA; Tremblay L; Lebar N; de Grosbois J; Mouchnino L; Blouin J
    PLoS One; 2019; 14(5):e0215518. PubMed ID: 31048853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.
    Blouin J; Saradjian AH; Lebar N; Guillaume A; Mouchnino L
    J Neurophysiol; 2014 Nov; 112(9):2290-301. PubMed ID: 25122716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal dynamics of reach-related neural activity for visual and somatosensory targets.
    Bernier PM; Burle B; Hasbroucq T; Blouin J
    Neuroimage; 2009 Oct; 47(4):1767-77. PubMed ID: 19460444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets.
    Bernier PM; Gauthier GM; Blouin J
    J Neurophysiol; 2007 Sep; 98(3):1815-9. PubMed ID: 17634334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eye and hand movement strategies in older adults during a complex reaching task.
    Coats RO; Fath AJ; Astill SL; Wann JP
    Exp Brain Res; 2016 Feb; 234(2):533-47. PubMed ID: 26537959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual-Somatosensory Integration in Older Adults: Links to Sensory Functioning.
    Dumas K; Holtzer R; Mahoney JR
    Multisens Res; 2016; 29(4-5):397-420. PubMed ID: 29384609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of visual and somatosensory target information in goal-directed eye and arm movements.
    Neggers SF; Bekkering H
    Exp Brain Res; 1999 Mar; 125(1):97-107. PubMed ID: 10100982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greater neural responses to trajectory errors are associated with superior force field adaptation in older adults.
    Reuter EM; Pearcey GEP; Carroll TJ
    Exp Gerontol; 2018 Sep; 110():105-117. PubMed ID: 29870754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age effects on sensorimotor predictions: What drives increased tactile suppression during reaching?
    Klever L; Voudouris D; Fiehler K; Billino J
    J Vis; 2019 Aug; 19(9):9. PubMed ID: 31426084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced spatial knowledge of target location eliminates age-related differences in early sensorimotor learning.
    Rajeshkumar L; Trewartha KM
    Exp Brain Res; 2019 Jul; 237(7):1781-1791. PubMed ID: 31049628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related effects of increasing postural challenge on eye movement onset latencies to visual targets.
    Jimenez S; Hollands M; Palmisano S; Kim J; Markoulli M; McAndrew D; Stamenkovic A; Walsh J; Bos S; Stapley PJ
    Exp Brain Res; 2016 Jun; 234(6):1599-609. PubMed ID: 26838356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects.
    DiZio P; Lackner JR
    J Neurophysiol; 2001 Feb; 85(2):784-9. PubMed ID: 11160512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planning and Executing Aiming Movements in Middle Childhood.
    de Oliveira DSV; Alouche SR; de Freitas SMSF; Oba GH; Giangiardi VF; de Sá CDSC
    Percept Mot Skills; 2022 Oct; 129(5):1362-1380. PubMed ID: 35790415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of task-relevance on primary somatosensory cortex during continuous sensory-guided movement in the presence of bimodal competition.
    Meehan SK; Staines WR
    Brain Res; 2007 Mar; 1138():148-58. PubMed ID: 17275792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairment of online control of reaching movements with aging: a double-step study.
    Sarlegna FR
    Neurosci Lett; 2006 Aug; 403(3):309-14. PubMed ID: 16723186
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.