These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3196101)

  • 1. Successful treatment of empyema thoracis with polymethylmethacrylate antibiotic-impregnated beads in the guinea pig.
    Mavroudis C; Katzmark SL; Ganzel BL; Gray LA; Polk HC
    Ann Thorac Surg; 1988 Dec; 46(6):615-8. PubMed ID: 3196101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of antibiotic-impregnated polymethylmethacrylate beads to prevent the evolution of localized infection.
    Seligson D; Mehta S; Voos K; Henry SL; Johnson JR
    J Orthop Trauma; 1992; 6(4):401-6. PubMed ID: 1494090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hemothorax on experimental empyema thoracis in the guinea pig.
    Mavroudis C; Ganzel BL; Katzmark S; Polk HC
    J Thorac Cardiovasc Surg; 1985 Jan; 89(1):42-9. PubMed ID: 3880847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial adherence to plain and tobramycin-laden polymethylmethacrylate beads.
    Lyons VO; Henry SL; Faghiri M; Seligson D
    Clin Orthop Relat Res; 1992 May; (278):260-4. PubMed ID: 1563161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of systemic antibiotic and antibiotic-impregnated polymethylmethacrylate beads on the bacterial clearance in wounds containing contaminated dead bone.
    Chen NT; Hong HZ; Hooper DC; May JW
    Plast Reconstr Surg; 1993 Dec; 92(7):1305-11; discussion 1312-3. PubMed ID: 8248406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of antibiotic-loaded polymethylmethacrylate beads for the treatment of extracavitary prosthetic vascular graft infections.
    Stone PA; Armstrong PA; Bandyk DF; Brumberg RS; Flaherty SK; Back MR; Johnson BL; Shames ML
    J Vasc Surg; 2006 Oct; 44(4):757-61. PubMed ID: 17012000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of antibiotic release from polymethylmethacrylate beads and sponge collagen.
    Becker PL; Smith RA; Williams RS; Dutkowsky JP
    J Orthop Res; 1994 Sep; 12(5):737-41. PubMed ID: 7931791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of the diffusion of tobramycin and cefotaxime out of antibiotic-impregnated polymethylmethacrylate beads.
    Wilson KJ; Cierny G; Adams KR; Mader JT
    J Orthop Res; 1988; 6(2):279-86. PubMed ID: 3278081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characteristics of tobramycin-PMMA beads: compressive strength and leaching.
    Kirkpatrick DK; Trachtenberg LS; Mangino PD; Von Fraunhofer JA; Seligson D
    Orthopedics; 1985 Sep; 8(9):1130-3. PubMed ID: 3832055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental aerobic-anaerobic thoracic empyema in the guinea pig.
    Mavroudis C; Ganzel BL; Cox SK; Polk HC
    Ann Thorac Surg; 1987 Mar; 43(3):298-302. PubMed ID: 3548615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wound and serum levels of tobramycin with the prophylactic use of tobramycin-impregnated polymethylmethacrylate beads in compound fractures.
    Eckman JB; Henry SL; Mangino PD; Seligson D
    Clin Orthop Relat Res; 1988 Dec; (237):213-5. PubMed ID: 3191632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional antibiotic delivery for the treatment of experimental prosthetic graft infections.
    Keeling WB; Myers AR; Stone PA; Heller L; Widen R; Back MR; Johnson BL; Bandyk DF; Shames ML
    J Surg Res; 2009 Dec; 157(2):223-6. PubMed ID: 19560786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and release characteristics of tobramycin-impregnated polymethylmethacrylate beads.
    Goodell JA; Flick AB; Hebert JC; Howe JG
    Am J Hosp Pharm; 1986 Jun; 43(6):1454-61. PubMed ID: 3728480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of vancomycin and tobramycin polymethylmethacrylate impregnated beads in the management of chronic osteomyelitis.
    Scott DM; Rotschafer JC; Behrens F
    Drug Intell Clin Pharm; 1988 Jun; 22(6):480-3. PubMed ID: 3293958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of negative pressure wound therapy on the elution of antibiotics from polymethylmethacrylate beads in a porcine simulated open femur fracture model.
    Large TM; Douglas G; Erickson G; Grayson JK
    J Orthop Trauma; 2012 Sep; 26(9):506-11. PubMed ID: 22549033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads.
    Mader JT; Calhoun J; Cobos J
    Antimicrob Agents Chemother; 1997 Feb; 41(2):415-8. PubMed ID: 9021200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncommercial fabrication of antibiotic-impregnated polymethylmethacrylate beads. Technical note.
    Flick AB; Herbert JC; Goodell J; Kristiansen T
    Clin Orthop Relat Res; 1987 Oct; (223):282-6. PubMed ID: 3652588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local antibiotic delivery by a bioabsorbable gel is superior to PMMA bead depot in reducing infection in an open fracture model.
    Penn-Barwell JG; Murray CK; Wenke JC
    J Orthop Trauma; 2014 Jun; 28(6):370-5. PubMed ID: 23948961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of commercially-available antibiotic-impregnated implants.
    Wenke JC; Owens BD; Svoboda SJ; Brooks DE
    J Bone Joint Surg Br; 2006 Aug; 88(8):1102-4. PubMed ID: 16877615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibition of bacterial adhesion to a tobramycin-impregnated polymethylmethacrylate substratum.
    Oga M; Arizono T; Sugioka Y; Naylor PT; Myrvik QN; Gristina AG
    J Long Term Eff Med Implants; 1992; 1(4):321-8. PubMed ID: 10171117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.