These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31961131)

  • 1. High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents.
    Palomba JM; Harvey SP; Kalaj M; Pimentel BR; DeCoste JB; Peterson GW; Cohen SM
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14672-14677. PubMed ID: 31961131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts.
    Kiaei K; Nord MT; Chiu NC; Stylianou KC
    ACS Appl Mater Interfaces; 2022 May; 14(17):19747-19755. PubMed ID: 35445601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of macroscopic monolithic metal-organic gels for ultra-fast destruction of chemical warfare agents.
    Zhou C; Zhang S; Pan H; Yang G; Wang L; Tao CA; Li H
    RSC Adv; 2021 Jun; 11(36):22125-22130. PubMed ID: 35480835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation.
    Kalaj M; Momeni MR; Bentz KC; Barcus KS; Palomba JM; Paesani F; Cohen SM
    Chem Commun (Camb); 2019 Mar; 55(24):3481-3484. PubMed ID: 30829360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spray-Coating of Catalytically Active MOF-Polythiourea through Postsynthetic Polymerization.
    Kalaj M; Cohen SM
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13984-13989. PubMed ID: 32369673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks.
    Liao Y; Sheridan T; Liu J; Farha O; Hupp J
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30565-30575. PubMed ID: 34161064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-by-Layer Fabrication of Core-Shell Fe
    Chen R; Tao CA; Zhang Z; Chen X; Liu Z; Wang J
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43156-43165. PubMed ID: 31652043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted activation and modulator removal in zirconium MOFs for buffer-free CWA hydrolysis.
    Kalinovskyy Y; Cooper NJ; Main MJ; Holder SJ; Blight BA
    Dalton Trans; 2017 Nov; 46(45):15704-15709. PubMed ID: 29094739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxification of Chemical Warfare Agents Using a Zr
    Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK
    Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs.
    Ghasempour H; Morsali A
    Chemistry; 2020 Dec; 26(72):17437-17444. PubMed ID: 32757398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal graphene/UiO-66-NH
    Song L; Zhao T; Yang D; Wang X; Hao X; Liu Y; Zhang S; Yu ZZ
    J Hazard Mater; 2020 Jul; 393():122332. PubMed ID: 32120207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation.
    Kalaj M; Palomba JM; Bentz KC; Cohen SM
    Chem Commun (Camb); 2019 May; 55(37):5367-5370. PubMed ID: 30994655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of UiO-66-NH
    Chen M; Tu Y; Wu S
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34066489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal-Organic Frameworks.
    Kim HH; Seo JY; Kim H; Jeong S; Baek KY; Kim J; Min S; Kim SH; Jeong K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3782-3792. PubMed ID: 33461292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks.
    Ploskonka AM; DeCoste JB
    J Hazard Mater; 2019 Aug; 375():191-197. PubMed ID: 31059988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics.
    Yao A; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant.
    Shen C; Mao Z; Xu H; Zhang L; Zhong Y; Wang B; Feng X; Tao CA; Sui X
    Carbohydr Polym; 2019 Jun; 213():184-191. PubMed ID: 30879659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into Catalytic Hydrolysis of Organophosphonates at M-OH Sites of Azolate-Based Metal Organic Frameworks.
    Mian MR; Chen H; Cao R; Kirlikovali KO; Snurr RQ; Islamoglu T; Farha OK
    J Am Chem Soc; 2021 Jul; 143(26):9893-9900. PubMed ID: 34160219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework.
    Luo HB; Castro AJ; Wasson MC; Flores W; Farha OK; Liu Y
    ACS Catal; 2021 Feb; 11(3):1424-1429. PubMed ID: 33614195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn
    Yang J; He X; Dai J; Tian R; Yuan D
    J Hazard Mater; 2021 Sep; 417():126056. PubMed ID: 33992917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.