BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31961167)

  • 1. Spatial cognitive implications of teleporting through virtual environments.
    Cherep LA; Lim AF; Kelly JW; Acharya D; Velasco A; Bustamante E; Ostrander AG; Gilbert SB
    J Exp Psychol Appl; 2020 Sep; 26(3):480-492. PubMed ID: 31961167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual differences in teleporting through virtual environments.
    Cherep LA; Kelly JW; Miller A; Lim AF; Gilbert SB
    J Exp Psychol Appl; 2023 Mar; 29(1):111-123. PubMed ID: 34990154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Teleporting through virtual environments: Effects of path scale and environment scale on spatial updating.
    Kelly JW; Ostrander AG; Lim AF; Cherep LA; Gilbert SB
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1841-1850. PubMed ID: 32070962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote research on locomotion interfaces for virtual reality: Replication of a lab-based study on teleporting interfaces.
    Kelly JW; Hoover M; Doty TA; Renner A; Zimmerman M; Knuth K; Cherep LA; Gilbert SB
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2037-2046. PubMed ID: 35167459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using virtual reality to assess dynamic self-motion and landmark cues for spatial updating in children and adults.
    Barhorst-Cates EM; Stoker J; Stefanucci JK; Creem-Regehr SH
    Mem Cognit; 2021 Apr; 49(3):572-585. PubMed ID: 33108632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of virtual locomotion methods in movement experts and non-experts: testing the contributions of body-based and visual translation for spatial updating.
    Barhorst-Cates EM; Stefanucci JK; Creem-Regehr SH
    Exp Brain Res; 2020 Sep; 238(9):1911-1923. PubMed ID: 32556428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective resetting position and heading estimations while driving in a large-scale immersive virtual environment.
    Zhang L; Mou W
    Exp Brain Res; 2019 Feb; 237(2):335-350. PubMed ID: 30406817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal combination of environmental cues and path integration during navigation.
    Sjolund LA; Kelly JW; McNamara TP
    Mem Cognit; 2018 Jan; 46(1):89-99. PubMed ID: 28828745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition and transfer of spatial knowledge during wayfinding.
    He Q; McNamara TP; Bodenheimer B; Klippel A
    J Exp Psychol Learn Mem Cogn; 2019 Aug; 45(8):1364-1386. PubMed ID: 30124310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation in Virtual Reality Does Not Fully Measure Up to the Real-World.
    Kimura K; Reichert JF; Olson A; Pouya OR; Wang X; Moussavi Z; Kelly DM
    Sci Rep; 2017 Dec; 7(1):18109. PubMed ID: 29273759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurofunctional correlates of geometry and feature use in a virtual environment.
    Forloines MR; Reid MA; Thompkins AM; Robinson JL; Katz JS
    J Exp Psychol Learn Mem Cogn; 2019 Aug; 45(8):1347-1363. PubMed ID: 30346212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?
    Riecke BE; Freiberg JB; Grechkin TY
    J Vis; 2015 Feb; 15(2):. PubMed ID: 25761342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial updating in virtual reality for reproducing object locations in vista space-Boundaries, landmarks, and idiothetic cues.
    Borodaeva Z; Winkler S; Brade J; Klimant P; Jahn G
    Front Psychol; 2023; 14():1144861. PubMed ID: 37425154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Virtual Floor Maze Test - Effects of Distal Visual Cues and Correlations With Executive Function in Healthy Adults.
    Martelli D; Prado A; Xia B; Verghese J; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2229-2236. PubMed ID: 31478863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Virtual Reality System for Auditory Tasks in Head-fixed Mice.
    Gao S; Webb J; Mridha Z; Banta A; Kemere C; McGinley M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2925-2928. PubMed ID: 33018619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning-dependent evolution of spatial representations in large-scale virtual environments.
    Starrett MJ; Stokes JD; Huffman DJ; Ferrer E; Ekstrom AD
    J Exp Psychol Learn Mem Cogn; 2019 Mar; 45(3):497-514. PubMed ID: 29985031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual Reality Systems as an Orientation Aid for People Who Are Blind to Acquire New Spatial Information.
    Lahav O
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality.
    Kinkhabwala AA; Gu Y; Aronov D; Tank DW
    Elife; 2020 Mar; 9():. PubMed ID: 32149601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piloting and path integration within and across boundaries.
    Mou W; Wang L
    J Exp Psychol Learn Mem Cogn; 2015 Jan; 41(1):220-34. PubMed ID: 24933698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.