These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31961506)

  • 1. Molecular Self-Assembly of Cyclic Dipeptide Derivatives and Their Applications.
    Manchineella S; Govindaraju T
    Chempluschem; 2017 Jan; 82(1):88-106. PubMed ID: 31961506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides.
    Scarel M; Marchesan S
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34204905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials.
    Chen Y; Tao K; Ji W; Makam P; Rencus-Lazar S; Gazit E
    Protein Pept Lett; 2020; 27(8):688-697. PubMed ID: 32048950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy.
    Yang M; Yuan C; Shen G; Chang R; Xing R; Yan X
    J Colloid Interface Sci; 2019 Dec; 557():458-464. PubMed ID: 31539842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic Dipeptide: A Privileged Molecular Scaffold to Derive Structural Diversity and Functional Utility.
    Balachandra C; Padhi D; Govindaraju T
    ChemMedChem; 2021 Sep; 16(17):2558-2587. PubMed ID: 33938157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Dipeptide-Based Ambidextrous Supergelators: Minimalistic Rational Design, Structure-Gelation Studies, and In Situ Hydrogelation.
    Manchineella S; Murugan NA; Govindaraju T
    Biomacromolecules; 2017 Nov; 18(11):3581-3590. PubMed ID: 28856890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-induced helical assembly and reversible chiroptical switching of chiral cyclic-dipeptide-functionalized naphthalenediimides.
    Manchineella S; Prathyusha V; Priyakumar UD; Govindaraju T
    Chemistry; 2013 Dec; 19(49):16615-24. PubMed ID: 24281809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide.
    You Y; Xing R; Zou Q; Shi F; Yan X
    Beilstein J Nanotechnol; 2019; 10():1894-1901. PubMed ID: 31598455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties.
    Avinash MB; Raut D; Mishra MK; Ramamurty U; Govindaraju T
    Sci Rep; 2015 Nov; 5():16070. PubMed ID: 26525957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal to Hydrogel Transformation in S-Benzyl-L-Cysteine-Containing Cyclic Dipeptides - Nanostructure Elucidation and Applications.
    Ghosh S; Sepay N; Banerji B
    Chemistry; 2024 Jun; ():e202401874. PubMed ID: 38853148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Dipeptide-Guided Aggregation-Induced Emission of Naphthalimide and Its Application for the Detection of Phenolic Drugs.
    Balachandra C; Govindaraju T
    J Org Chem; 2020 Feb; 85(3):1525-1536. PubMed ID: 31799846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.
    Chen C; Liu K; Li J; Yan X
    Adv Colloid Interface Sci; 2015 Nov; 225():177-93. PubMed ID: 26365127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Architectonics of Cyclic Dipeptide Amphiphiles and Their Application in Drug Delivery.
    Pandurangan K; Roy B; Rajasekhar K; Suseela YV; Nagendra P; Chaturvedi A; Satwik UR; Murugan NA; Ramamurty U; Govindaraju T
    ACS Appl Bio Mater; 2020 May; 3(5):3413-3422. PubMed ID: 35025383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Cyclic Dipeptide Functionalized Nanofibers for Thermal Sensing and Energy Harvesting.
    Santos D; Baptista RMF; Handa A; Almeida B; Rodrigues PV; Torres AR; Machado A; Belsley M; de Matos Gomes E
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tRNA-dependent biosynthesis of modified cyclic dipeptides.
    Giessen TW; Marahiel MA
    Int J Mol Sci; 2014 Aug; 15(8):14610-31. PubMed ID: 25196600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Architectonics: Design of Molecular Architecture for Functional Applications.
    Avinash MB; Govindaraju T
    Acc Chem Res; 2018 Feb; 51(2):414-426. PubMed ID: 29364649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tRNA-dependent two-enzyme pathway for the generation of singly and doubly methylated ditryptophan 2,5-diketopiperazines.
    Giessen TW; von Tesmar AM; Marahiel MA
    Biochemistry; 2013 Jun; 52(24):4274-83. PubMed ID: 23705796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversibly Thermochromic Cyclic Dipeptide Nanotubes.
    Seo MJ; Song J; Kantha C; Khazi MI; Kundapur U; Heo JM; Kim JM
    Langmuir; 2018 Jul; 34(28):8365-8373. PubMed ID: 29933690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.