These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31961618)

  • 21. Carbazole-based green and blue-BODIPY dyads and triads as donors for bulk heterojunction organic solar cells.
    Yang J; Devillers CH; Fleurat-Lessard P; Jiang H; Wang S; Gros CP; Gupta G; Sharma GD; Xu H
    Dalton Trans; 2020 May; 49(17):5606-5617. PubMed ID: 32285049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thieno[3,4-c]pyrrole-4,6-dione-based small molecules for highly efficient solution-processed organic solar cells.
    Ha JJ; Kim YJ; Park JG; An TK; Kwon SK; Park CE; Kim YH
    Chem Asian J; 2014 Apr; 9(4):1045-53. PubMed ID: 24478131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2-
    Chen L; Zeng M; Weng C; Tan S; Shen P
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48134-48146. PubMed ID: 31823611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks.
    Do TT; Pham HD; Manzhos S; Bell JM; Sonar P
    ACS Appl Mater Interfaces; 2017 May; 9(20):16967-16976. PubMed ID: 28467709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical investigations on enhancing the performance of terminally diketopyrrolopyrrole-based small-molecular donors in organic solar cell applications.
    Liu X; Huang C; Shen W; He R; Li M
    J Mol Model; 2016 Jan; 22(1):15. PubMed ID: 26689703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bi-diketopyrrolopyrrole (Bi-DPP) as a novel electron accepting compound in low band gap π-conjugated donor-acceptor copolymers/oligomers.
    Ahner J; Nowotny J; Schubert US; Hager MD
    Des Monomers Polym; 2017; 20(1):210-220. PubMed ID: 29491794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, optical and electrochemical properties of the A-π-D-π-A porphyrin and its application as an electron donor in efficient solution processed bulk heterojunction solar cells.
    Vijay Kumar C; Cabau L; Koukaras EN; Sharma GD; Palomares E
    Nanoscale; 2015 Jan; 7(1):179-89. PubMed ID: 25408154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells.
    Khan MU; Hussain R; Mehboob MY; Khalid M; Ehsan MA; Rehman A; Janjua MRSA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118938. PubMed ID: 32971344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic donor materials based on Bis(arylene ethynylene)s for bulk heterojunction organic solar cells with high V(oc) values.
    Zhan H; Liu Q; Dai F; Ho CL; Fu Y; Li L; Zhao L; Li H; Xie Z; Wong WY
    Chem Asian J; 2015 Apr; 10(4):1017-24. PubMed ID: 25663490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the Terminal Electron Donor in D-D-π-A Organic Dye-Sensitized Solar Cells: Dithieno[3,2-b:2',3'-d]pyrrole versus Bis(amine).
    Dai P; Yang L; Liang M; Dong H; Wang P; Zhang C; Sun Z; Xue S
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22436-47. PubMed ID: 26394089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. D-A-D-π-D-A-D type diketopyrrolopyrrole based small molecule electron donors for bulk heterojunction organic solar cells.
    Patil Y; Misra R; Sharma A; Sharma GD
    Phys Chem Chem Phys; 2016 Jun; 18(25):16950-7. PubMed ID: 27292157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2-Alkyl-5-thienyl-substituted benzo[1,2-b:4,5-b']dithiophene-based donor molecules for solution-processed organic solar cells.
    Patra D; Huang TY; Chiang CC; Maturana RO; Pao CW; Ho KC; Wei KH; Chu CW
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9494-500. PubMed ID: 24001111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells.
    Zhou H; Yang L; Stoneking S; You W
    ACS Appl Mater Interfaces; 2010 May; 2(5):1377-83. PubMed ID: 20438089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
    Li W; Lee T; Oh SJ; Kagan CR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aromaticity controls the excited-state properties of host-guest complexes of nanohoops.
    George G; Stasyuk OA; Voityuk AA; Stasyuk AJ; Solà M
    Nanoscale; 2023 Jan; 15(3):1221-1229. PubMed ID: 36537223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fuse the π-Bridge to Acceptor Moiety of Donor-π-Acceptor Conjugated Polymer: Enabling an All-Round Enhancement in Photovoltaic Parameters of Nonfullerene Organic Solar Cells.
    Yu L; Li Y; Wang Y; Wang X; Cui W; Wen S; Zheng N; Sun M; Yang R
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31087-31095. PubMed ID: 31370399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A New Small-Molecule Donor Containing Non-Fused Ring π-Bridge Enables Efficient Organic Solar Cells with High Open Circuit Voltage and Low Acceptor Content.
    Wang K; Guo X; Ye C; Wang Y; Meng Y; Li X; Zhang M
    Chemphyschem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31257670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance non-fullerene acceptor-analogues designed from dithienothiophen [3,2-b]-pyrrolobenzothiadiazole (TPBT) donor materials.
    Abbas F; Mohammadi MD; Louis H; Agwamba EC
    J Mol Model; 2023 Jan; 29(1):31. PubMed ID: 36595085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical enhancement of the electronic and optical properties of a new D-π-A-π-D synthesized donor molecule for a new generation of fullerene-based bulk heterojunction (BHJ) for new organic solar cells devices.
    Chebil S; Chemek M; Mestiri T; Alimi K
    J Mol Graph Model; 2022 Sep; 115():108226. PubMed ID: 35667144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.