BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 31961648)

  • 21. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.
    Zhu LQ; Wan CJ; Gao PQ; Liu YH; Xiao H; Ye JC; Wan Q
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21770-5. PubMed ID: 27471861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor.
    Yang JT; Ge C; Du JY; Huang HY; He M; Wang C; Lu HB; Yang GZ; Jin KJ
    Adv Mater; 2018 Jul; ():e1801548. PubMed ID: 29974526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biocompatible Casein Electrolyte-Based Electric-Double-Layer for Artificial Synaptic Transistors.
    Kim HS; Park H; Cho WJ
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs.
    Du N; Zhao X; Chen Z; Choubey B; Di Ventra M; Skorupa I; Bürger D; Schmidt H
    Front Neurosci; 2021; 15():660894. PubMed ID: 34335153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of Synaptic Characteristics Achieved by the Optimization of Proton-Electron Coupling Effect in a Solid-State Electrolyte-Gated Transistor.
    Jin DG; Kim SH; Kim SG; Park J; Park E; Yu HY
    Small; 2021 Jul; 17(30):e2100242. PubMed ID: 34114332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatible Potato-Starch Electrolyte-Based Coplanar Gate-Type Artificial Synaptic Transistors on Paper Substrates.
    Choi HS; Lee YJ; Park H; Cho WJ
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial Synapse Emulated through Fully Aqueous Solution-Processed Low-Voltage In
    Zhou Y; Li J; Yang Y; Chen Q; Zhang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):980-988. PubMed ID: 31815416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems.
    Kim HS; Park H; Cho WJ
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review.
    Bag SP; Lee S; Song J; Kim J
    Biosensors (Basel); 2024 Mar; 14(3):. PubMed ID: 38534257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible organic field-effect transistor arrays for wearable neuromorphic device applications.
    Li QX; Wang TY; Wang XL; Chen L; Zhu H; Wu XH; Sun QQ; Zhang DW
    Nanoscale; 2020 Nov; 12(45):23150-23158. PubMed ID: 33191413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing.
    Liu D; Shi Q; Dai S; Huang J
    Small; 2020 Apr; 16(13):e1907472. PubMed ID: 32068955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hardware Demonstration of SRDP Neuromorphic Computing with Online Unsupervised Learning Based on Memristor Synapses.
    Li R; Huang P; Feng Y; Zhou Z; Zhang Y; Ding X; Liu L; Kang J
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.
    Wan CJ; Liu YH; Zhu LQ; Feng P; Shi Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9762-8. PubMed ID: 27007748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Full imitation of synaptic metaplasticity based on memristor devices.
    Wu Q; Wang H; Luo Q; Banerjee W; Cao J; Zhang X; Wu F; Liu Q; Li L; Liu M
    Nanoscale; 2018 Mar; 10(13):5875-5881. PubMed ID: 29508884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors.
    Qian C; Sun J; Kong LA; Gou G; Yang J; He J; Gao Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26169-26175. PubMed ID: 27608136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness.
    Dai C; Huo C; Qi S; Dai M; Webster T; Xiao H
    Int J Nanomedicine; 2020; 15():8037-8043. PubMed ID: 33116516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic Transistors Based on PVA: Chitosan Biopolymer Blended Electric-Double-Layer with High Ionic Conductivity.
    Lee DH; Park H; Cho WJ
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems.
    Li X; Yu B; Wang B; Bao L; Zhang B; Li H; Yu Z; Zhang T; Yang Y; Huang R; Wu Y; Li M
    Nanoscale; 2020 Aug; 12(30):16348-16358. PubMed ID: 32725043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient characteristics for proton gating in laterally coupled indium-zinc-oxide transistors.
    Liu N; Zhu LQ; Xiao H; Wan CJ; Liu YH; Chao JY
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6205-10. PubMed ID: 25741771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.