BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31961880)

  • 21. Organoids: An intermediate modeling platform in precision oncology.
    Jin MZ; Han RR; Qiu GZ; Ju XC; Lou G; Jin WL
    Cancer Lett; 2018 Feb; 414():174-180. PubMed ID: 29174804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organoid Culture of Isolated Cells from Patient-derived Tissues with Colorectal Cancer.
    Xie BY; Wu AW
    Chin Med J (Engl); 2016 Oct; 129(20):2469-2475. PubMed ID: 27748340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying the effectiveness of 3D culture systems to recapitulate breast tumor tissue in situ.
    Ludwik KA; Greathouse FR; Han S; Stauffer K; Brenin DR; Stricker TP; Lannigan DA
    Cell Oncol (Dordr); 2024 Apr; 47(2):481-496. PubMed ID: 37776423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases.
    Weeber F; van de Wetering M; Hoogstraat M; Dijkstra KK; Krijgsman O; Kuilman T; Gadellaa-van Hooijdonk CG; van der Velden DL; Peeper DS; Cuppen EP; Vries RG; Clevers H; Voest EE
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13308-11. PubMed ID: 26460009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro.
    Skardal A; Devarasetty M; Rodman C; Atala A; Soker S
    Ann Biomed Eng; 2015 Oct; 43(10):2361-73. PubMed ID: 25777294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EHMT2 is a metastasis regulator in breast cancer.
    Kim K; Son MY; Jung CR; Kim DS; Cho HS
    Biochem Biophys Res Commun; 2018 Feb; 496(2):758-762. PubMed ID: 29337058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epithelial-mesenchymal transition in tumor metastasis.
    Yeung KT; Yang J
    Mol Oncol; 2017 Jan; 11(1):28-39. PubMed ID: 28085222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug response in organoids generated from frozen primary tumor tissues.
    Walsh AJ; Cook RS; Sanders ME; Arteaga CL; Skala MC
    Sci Rep; 2016 Jan; 6():18889. PubMed ID: 26738962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis.
    Fujii M; Shimokawa M; Date S; Takano A; Matano M; Nanki K; Ohta Y; Toshimitsu K; Nakazato Y; Kawasaki K; Uraoka T; Watanabe T; Kanai T; Sato T
    Cell Stem Cell; 2016 Jun; 18(6):827-838. PubMed ID: 27212702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Patient-Derived Gastric Cancer Organoids from Endoscopic Biopsies and Surgical Tissues.
    Gao M; Lin M; Rao M; Thompson H; Hirai K; Choi M; Georgakis GV; Sasson AR; Bucobo JC; Tzimas D; D'Souza LS; Buscaglia JM; Davis J; Shroyer KR; Li J; Powers S; Kim J
    Ann Surg Oncol; 2018 Sep; 25(9):2767-2775. PubMed ID: 30003451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis.
    Spring K; Fournier P; Lapointe L; Chabot C; Roussy J; Pommey S; Stagg J; Royal I
    Oncogene; 2015 Oct; 34(44):5536-47. PubMed ID: 25772245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. lacZ transduced human breast cancer xenografts as an in vivo model for the study of invasion and metastasis.
    Brünner N; Thompson EW; Spang-Thomsen M; Rygaard J; Danø K; Zwiebel JA
    Eur J Cancer; 1992; 28A(12):1989-95. PubMed ID: 1384607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Randomly Distributed K14
    Hwang PY; Brenot A; King AC; Longmore GD; George SC
    Cancer Res; 2019 Apr; 79(8):1899-1912. PubMed ID: 30862718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular Metabolic Heterogeneity In Vivo Is Recapitulated in Tumor Organoids.
    Sharick JT; Jeffery JJ; Karim MR; Walsh CM; Esbona K; Cook RS; Skala MC
    Neoplasia; 2019 Jun; 21(6):615-626. PubMed ID: 31078067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentially expressed genes associated with the metastatic phenotype in breast cancer.
    Kirschmann DA; Seftor EA; Nieva DR; Mariano EA; Hendrix MJ
    Breast Cancer Res Treat; 1999 May; 55(2):127-36. PubMed ID: 10481940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer.
    Walsh AJ; Cook RS; Sanders ME; Aurisicchio L; Ciliberto G; Arteaga CL; Skala MC
    Cancer Res; 2014 Sep; 74(18):5184-94. PubMed ID: 25100563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity.
    Tanaka N; Osman AA; Takahashi Y; Lindemann A; Patel AA; Zhao M; Takahashi H; Myers JN
    Oral Oncol; 2018 Dec; 87():49-57. PubMed ID: 30527243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive and prognostic markers for invasive breast cancer.
    Mori I; Yang Q; Kakudo K
    Pathol Int; 2002 Mar; 52(3):186-94. PubMed ID: 11972862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased expression of SPRY4-IT1 predicts poor prognosis and promotes tumor growth and metastasis in bladder cancer.
    Zhao XL; Zhao ZH; Xu WC; Hou JQ; Du XY
    Int J Clin Exp Pathol; 2015; 8(2):1954-60. PubMed ID: 25973088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma.
    Canevari RA; Marchi FA; Domingues MA; de Andrade VP; Caldeira JR; Verjovski-Almeida S; Rogatto SR; Reis EM
    Tumour Biol; 2016 Oct; 37(10):13855-13870. PubMed ID: 27485113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.