BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31961911)

  • 1. A mosquito juvenile hormone binding protein (mJHBP) regulates the activation of innate immune defenses and hemocyte development.
    Kim IH; Castillo JC; Aryan A; Martin-Martin I; Nouzova M; Noriega FG; Barletta ABF; Calvo E; Adelman ZN; Ribeiro JMC; Andersen JF
    PLoS Pathog; 2020 Jan; 16(1):e1008288. PubMed ID: 31961911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.
    Kim IH; Pham V; Jablonka W; Goodman WG; Ribeiro JMC; Andersen JF
    J Biol Chem; 2017 Sep; 292(37):15329-15339. PubMed ID: 28751377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockout of juvenile hormone receptor, Methoprene-tolerant, induces black larval phenotype in the yellow fever mosquito,
    Zhu GH; Jiao Y; Chereddy SCRR; Noh MY; Palli SR
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21501-21507. PubMed ID: 31570611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).
    Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR
    Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of antimicrobial peptides by juvenile hormone and its receptor, Methoprene-tolerant, in the mosquito Aedes aegypti.
    Chang MM; Wang YH; Yang QT; Wang XL; Wang M; Raikhel AS; Zou Z
    Insect Biochem Mol Biol; 2021 Jan; 128():103509. PubMed ID: 33264664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti.
    Kim CH; Muturi EJ
    J Insect Physiol; 2013 Jun; 59(6):604-10. PubMed ID: 23562781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immuno-suppressive effects of aqueous extract of soapnut Sapindus emarginatus on the larvae and pupae of vector mosquito, Aedes aegypti.
    Koodalingam A; Mullainadhan P; Arumugam M
    Acta Trop; 2013 Jun; 126(3):249-55. PubMed ID: 23499862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti.
    Cooper DM; Chamberlain CM; Lowenberger C
    Insect Biochem Mol Biol; 2009 Jan; 39(1):47-54. PubMed ID: 18977438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.
    Van Ekert E; Powell CA; Shatters RG; Borovsky D
    J Insect Physiol; 2014 Nov; 70():143-50. PubMed ID: 25111689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling infection responses in the haemocytes of the mosquito, Aedes aegypti.
    Bartholomay LC; Mayhew GF; Fuchs JF; Rocheleau TA; Erickson SM; Aliota MT; Christensen BM
    Insect Mol Biol; 2007 Dec; 16(6):761-76. PubMed ID: 18093005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of larval immune system traits as a correlated response to selection for rapid development in Drosophila melanogaster.
    Dey P; Mendiratta K; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):719-23. PubMed ID: 27659343
    [No Abstract]   [Full Text] [Related]  

  • 12. JH modulates a cellular immunity of Tribolium castaneum in a Met-independent manner.
    Hepat R; Kim Y
    J Insect Physiol; 2014 Apr; 63():40-7. PubMed ID: 24607640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection.
    Choi YJ; Fuchs JF; Mayhew GF; Yu HE; Christensen BM
    Insect Biochem Mol Biol; 2012 Oct; 42(10):729-38. PubMed ID: 22796331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti.
    Castillo JC; Robertson AE; Strand MR
    Insect Biochem Mol Biol; 2006 Dec; 36(12):891-903. PubMed ID: 17098164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity.
    Smith RC; King JG; Tao D; Zeleznik OA; Brando C; Thallinger GG; Dinglasan RR
    Mol Cell Proteomics; 2016 Nov; 15(11):3373-3387. PubMed ID: 27624304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Exposure at the Larval Stage Induced Sexual Immune Dimorphism and Priming in Adult Aedes aegypti Mosquitoes.
    Moreno-García M; Vargas V; Ramírez-Bello I; Hernández-Martínez G; Lanz-Mendoza H
    PLoS One; 2015; 10(7):e0133240. PubMed ID: 26181517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antibacterial innate immune response by the mosquito Aedes aegypti is mediated by hemocytes and independent of Gram type and pathogenicity.
    Hillyer JF; Schmidt SL; Christensen BM
    Microbes Infect; 2004 Apr; 6(5):448-59. PubMed ID: 15109959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment.
    Phillips DR; Clark KD
    PLoS One; 2017; 12(2):e0171447. PubMed ID: 28199361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes.
    League GP; Estévez-Lao TY; Yan Y; Garcia-Lopez VA; Hillyer JF
    Parasit Vectors; 2017 Aug; 10(1):367. PubMed ID: 28764812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic action of the transcription factors Krüppel homolog 1 and Hairy in juvenile hormone/Methoprene-tolerant-mediated gene-repression in the mosquito Aedes aegypti.
    Saha TT; Roy S; Pei G; Dou W; Zou Z; Raikhel AS
    PLoS Genet; 2019 Oct; 15(10):e1008443. PubMed ID: 31661489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.