BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31961914)

  • 1. CFTR dysregulation drives active selection of the gut microbiome.
    Meeker SM; Mears KS; Sangwan N; Brittnacher MJ; Weiss EJ; Treuting PM; Tolley N; Pope CE; Hager KR; Vo AT; Paik J; Frevert CW; Hayden HS; Hoffman LR; Miller SI; Hajjar AM
    PLoS Pathog; 2020 Jan; 16(1):e1008251. PubMed ID: 31961914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome.
    Bazett M; Honeyman L; Stefanov AN; Pope CE; Hoffman LR; Haston CK
    Mamm Genome; 2015 Jun; 26(5-6):222-34. PubMed ID: 25721416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fecal dysbiosis and inflammation in intestinal-specific Cftr knockout mice on regimens preventing intestinal obstruction.
    Young SM; Woode RA; Williams EC; Ericsson AC; Clarke LL
    Physiol Genomics; 2024 Mar; 56(3):247-264. PubMed ID: 38073491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Intestinal Microbiome and Cystic Fibrosis Transmembrane Conductance Regulator Modulators: Emerging Themes in the Management of Gastrointestinal Manifestations of Cystic Fibrosis.
    Karb DB; Cummings LC
    Curr Gastroenterol Rep; 2021 Aug; 23(10):17. PubMed ID: 34448955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung and Gut Microbiota Changes Associated with
    Bacci G; Rossi A; Armanini F; Cangioli L; De Fino I; Segata N; Mengoni A; Bragonzi A; Bevivino A
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cftr deletion in mouse epithelial and immune cells differentially influence the intestinal microbiota.
    Scull CE; Luo M; Jennings S; Taylor CM; Wang G
    Commun Biol; 2022 Oct; 5(1):1130. PubMed ID: 36289287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype.
    Vernocchi P; Del Chierico F; Russo A; Majo F; Rossitto M; Valerio M; Casadei L; La Storia A; De Filippis F; Rizzo C; Manetti C; Paci P; Ercolini D; Marini F; Fiscarelli EV; Dallapiccola B; Lucidi V; Miccheli A; Putignani L
    PLoS One; 2018; 13(12):e0208171. PubMed ID: 30521551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of CFTR modulation with Ivacaftor on Gut Microbiota and Intestinal Inflammation.
    Ooi CY; Syed SA; Rossi L; Garg M; Needham B; Avolio J; Young K; Surette MG; Gonska T
    Sci Rep; 2018 Dec; 8(1):17834. PubMed ID: 30546102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cystic Fibrosis, CFTR, and Colorectal Cancer.
    Scott P; Anderson K; Singhania M; Cormier R
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota.
    Lynch SV; Goldfarb KC; Wild YK; Kong W; De Lisle RC; Brodie EL
    Gut Microbes; 2013; 4(1):41-7. PubMed ID: 23060053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model.
    Bazett M; Bergeron ME; Haston CK
    Sci Rep; 2016 Jan; 6():19189. PubMed ID: 26754178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Microbiome in Cystic Fibrosis Pulmonary Disease.
    Françoise A; Héry-Arnaud G
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32403302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic Fibrosis-Related Gut Dysbiosis: A Systematic Review.
    Caley LR; White H; de Goffau MC; Floto RA; Parkhill J; Marsland B; Peckham DG
    Dig Dis Sci; 2023 May; 68(5):1797-1814. PubMed ID: 36600119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure.
    Hayden HS; Eng A; Pope CE; Brittnacher MJ; Vo AT; Weiss EJ; Hager KR; Martin BD; Leung DH; Heltshe SL; Borenstein E; Miller SI; Hoffman LR
    Nat Med; 2020 Feb; 26(2):215-221. PubMed ID: 31959989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent.
    Van de Weert-van Leeuwen PB; Van Meegen MA; Speirs JJ; Pals DJ; Rooijakkers SH; Van der Ent CK; Terheggen-Lagro SW; Arets HG; Beekman JM
    Am J Respir Cell Mol Biol; 2013 Sep; 49(3):463-70. PubMed ID: 23617438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis.
    Manor O; Levy R; Pope CE; Hayden HS; Brittnacher MJ; Carr R; Radey MC; Hager KR; Heltshe SL; Ramsey BW; Miller SI; Hoffman LR; Borenstein E
    Sci Rep; 2016 Mar; 6():22493. PubMed ID: 26940651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traumatic Brain Injury in Mice Induces Acute Bacterial Dysbiosis Within the Fecal Microbiome.
    Treangen TJ; Wagner J; Burns MP; Villapol S
    Front Immunol; 2018; 9():2757. PubMed ID: 30546361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator.
    Deschemin JC; Allouche S; Brouillard F; Vaulont S
    PLoS One; 2015; 10(12):e0145685. PubMed ID: 26709821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cystic fibrosis intestine.
    De Lisle RC; Borowitz D
    Cold Spring Harb Perspect Med; 2013 Sep; 3(9):a009753. PubMed ID: 23788646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health.
    Madan JC
    Clin Ther; 2016 Apr; 38(4):740-6. PubMed ID: 26973296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.