These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Rational design of a multi-epitope vaccine against heartland virus (HRTV) using immune-informatics, molecular docking and dynamics approaches. Ahmed MZ; Alqahtani AS; Rehman MT Acta Trop; 2024 Nov; 259():107388. PubMed ID: 39251172 [TBL] [Abstract][Full Text] [Related]
4. A novel vaccine construct against Zika virus fever: insights from epitope-based vaccine discovery through molecular modeling and immunoinformatics approaches. Alharbi M; Alshammari A; Alsabhan JF; Alzarea SI; Alshammari T; Alasmari F; Alasmari AF Front Immunol; 2024; 15():1426496. PubMed ID: 39050858 [TBL] [Abstract][Full Text] [Related]
5. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. Kumar Pandey R; Ojha R; Mishra A; Kumar Prajapati V J Cell Biochem; 2018 Sep; 119(9):7631-7642. PubMed ID: 29900580 [TBL] [Abstract][Full Text] [Related]
6. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Antonelli ACB; Almeida VP; de Castro FOF; Silva JM; Pfrimer IAH; Cunha-Neto E; Maranhão AQ; Brígido MM; Resende RO; Bocca AL; Fonseca SG Sci Rep; 2022 Jan; 12(1):53. PubMed ID: 34997041 [TBL] [Abstract][Full Text] [Related]
7. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Mirza MU; Rafique S; Ali A; Munir M; Ikram N; Manan A; Salo-Ahen OM; Idrees M Sci Rep; 2016 Dec; 6():37313. PubMed ID: 27934901 [TBL] [Abstract][Full Text] [Related]
8. Rational design of B-cell and T-cell multi epitope-based vaccine against Zika virus, an Ganji M; Bakhshi S; Ahmadi K; Shoari A; Moeini S; Ghaemi A J Biomol Struct Dyn; 2024 Apr; 42(7):3426-3440. PubMed ID: 37190978 [TBL] [Abstract][Full Text] [Related]
9. Exploring T & B-cell epitopes and designing multi-epitope subunit vaccine targeting integration step of HIV-1 lifecycle using immunoinformatics approach. Abdulla F; Adhikari UK; Uddin MK Microb Pathog; 2019 Dec; 137():103791. PubMed ID: 31606417 [TBL] [Abstract][Full Text] [Related]
10. A novel multi-epitope peptide vaccine against cancer: an in silico approach. Nezafat N; Ghasemi Y; Javadi G; Khoshnoud MJ; Omidinia E J Theor Biol; 2014 May; 349():121-34. PubMed ID: 24512916 [TBL] [Abstract][Full Text] [Related]
11. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Fadaka AO; Sibuyi NRS; Martin DR; Goboza M; Klein A; Madiehe AM; Meyer M Sci Rep; 2021 Oct; 11(1):19707. PubMed ID: 34611250 [TBL] [Abstract][Full Text] [Related]
12. Immunoinformatics assisted profiling of West Nile virus proteome to determine immunodominant epitopes for the development of next-generation multi-peptide vaccine. Karkashan A Front Immunol; 2024; 15():1395870. PubMed ID: 38799422 [TBL] [Abstract][Full Text] [Related]
13. Development a multi-epitope driven subunit vaccine for immune response reinforcement against Serogroup B of Neisseria meningitidis using comprehensive immunoinformatics approaches. Rostamtabar M; Rahmani A; Baee M; Karkhah A; Prajapati VK; Ebrahimpour S; Nouri HR Infect Genet Evol; 2019 Nov; 75():103992. PubMed ID: 31394292 [TBL] [Abstract][Full Text] [Related]
14. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach. Chand Y; Singh S Microb Pathog; 2021 Oct; 159():105150. PubMed ID: 34425197 [TBL] [Abstract][Full Text] [Related]