BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31962204)

  • 1. Physiological and transcriptomic analyses of cadmium stress response in Dendrobium officinale seedling.
    Jiang W; Wu Z; Wang T; Mantri N; Huang H; Li H; Tao Z; Guo Q
    Plant Physiol Biochem; 2020 Mar; 148():152-165. PubMed ID: 31962204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes.
    Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M
    BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis between two different cadmium-accumulating genotypes of soybean (Glycine max) in response to cadmium stress.
    Liu X; Zhang H; Zhang W; Jia Q; Chen X; Chen H
    BMC Genom Data; 2024 May; 25(1):43. PubMed ID: 38710997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress.
    Zhu H; Ai H; Cao L; Sui R; Ye H; Du D; Sun J; Yao J; Chen K; Chen L
    Ecotoxicol Environ Saf; 2018 Sep; 160():349-356. PubMed ID: 29860131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root.
    Huang Y; Chen H; Reinfelder JR; Liang X; Sun C; Liu C; Li F; Yi J
    Sci Total Environ; 2019 May; 666():445-460. PubMed ID: 30802660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjoint analysis of physio-biochemical, transcriptomic, and metabolomic reveals the response characteristics of solanum nigrum L. to cadmium stress.
    Wang J; Chen X; Chu S; Hayat K; Chi Y; Liao X; Zhang H; Xie Y; Zhou P; Zhang D
    BMC Plant Biol; 2024 Jun; 24(1):567. PubMed ID: 38880885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale.
    Chen Y; Wang Y; Lyu P; Chen L; Shen C; Sun C
    J Plant Res; 2019 May; 132(3):419-429. PubMed ID: 30903398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi.
    Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X
    Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus.
    Fu Y; Mason AS; Zhang Y; Lin B; Xiao M; Fu D; Yu H
    BMC Plant Biol; 2019 Dec; 19(1):570. PubMed ID: 31856702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of early transcriptome responses to copper and cadmium in rice roots.
    Lin CY; Trinh NN; Fu SF; Hsiung YC; Chia LC; Lin CW; Huang HJ
    Plant Mol Biol; 2013 Mar; 81(4-5):507-22. PubMed ID: 23400832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cadmium toxicity on diploid wheat (Triticum urartu) and the molecular mechanism of the cadmium response.
    Qiao K; Liang S; Wang F; Wang H; Hu Z; Chai T
    J Hazard Mater; 2019 Jul; 374():1-10. PubMed ID: 30974226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq.
    Shen C; Guo H; Chen H; Shi Y; Meng Y; Lu J; Feng S; Wang H
    Sci Rep; 2017 Mar; 7(1):187. PubMed ID: 28298629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments.
    Leng Y; Li Y; Wen Y; Zhao H; Wang Q; Li SW
    Ecotoxicol Environ Saf; 2020 Nov; 204():111098. PubMed ID: 32798749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale.
    Wang T; Song Z; Wei L; Li L
    Genes Genomics; 2018 Mar; 40(3):265-279. PubMed ID: 29892797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis of Verbena bonariensis roots in response to cadmium stress.
    Wang MQ; Bai ZY; Xiao YF; Li Y; Liu QL; Zhang L; Pan YZ; Jiang BB; Zhang F
    BMC Genomics; 2019 Nov; 20(1):877. PubMed ID: 31747870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo.
    Liu Y; Liu B; Luo K; Yu B; Li X; Zeng J; Chen J; Xia R; Xu J; Liu Y
    BMC Plant Biol; 2024 May; 24(1):396. PubMed ID: 38745125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization.
    Zhang M; Liu X; Yuan L; Wu K; Duan J; Wang X; Yang L
    Plant Physiol Biochem; 2012 Jan; 50(1):79-86. PubMed ID: 21855360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach.
    Peng H; He X; Gao J; Ma H; Zhang Z; Shen Y; Pan G; Lin H
    Biochem Biophys Res Commun; 2015 Sep; 464(4):1040-1047. PubMed ID: 26212435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling Cadmium Toxicity in
    Wu F; Fan J; Ye X; Yang L; Hu R; Ma J; Ma S; Li D; Zhou J; Nie G; Zhang X
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563002
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.