These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 31962299)

  • 1. Skyrmion flop transition and congregation of mutually orthogonal skyrmions in cubic helimagnets.
    Vlasov SM; Uzdin VM; Leonov AO
    J Phys Condens Matter; 2020 May; 32(18):185801. PubMed ID: 31962299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precursor skyrmion states near the ordering temperatures of chiral magnets.
    Leonov AO
    Phys Chem Chem Phys; 2023 Nov; 25(42):28691-28702. PubMed ID: 37849353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets.
    Shigenaga T; Leonov AO
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures.
    Leonov AO; Rößler UK
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Stability of Skyrmion Tubes in Nanostructured Cuboids.
    Jiang J; Tang J; Bai T; Wu Y; Qin J; Xia W; Chen R; Yan A; Wang S; Tian M; Du H
    Nano Lett; 2024 Feb; 24(5):1587-1593. PubMed ID: 38259044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave field frequency and current density modulated skyrmion-chain in nanotrack.
    Ma F; Ezawa M; Zhou Y
    Sci Rep; 2015 Oct; 5():15154. PubMed ID: 26468929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets.
    Leonov AO
    Phys Rev E; 2021 Oct; 104(4-1):044701. PubMed ID: 34781482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Switching of the Number of Skyrmions in a Magnetic Nanodot by Electric Fields.
    Hou Z; Wang Y; Lan X; Li S; Wan X; Meng F; Hu Y; Fan Z; Feng C; Qin M; Zeng M; Zhang X; Liu X; Fu X; Yu G; Zhou G; Zhou Y; Zhao W; Gao X; Liu JM
    Adv Mater; 2022 Mar; 34(11):e2107908. PubMed ID: 34969153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current-induced shuttlecock-like movement of non-axisymmetric chiral skyrmions.
    Murooka R; Leonov AO; Inoue K; Ohe JI
    Sci Rep; 2020 Jan; 10(1):396. PubMed ID: 31941954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Perpendicular Skyrmions and Their Surface Confinement.
    Zhang S; Burn DM; Jaouen N; Chauleau JY; Haghighirad AA; Liu Y; Wang W; van der Laan G; Hesjedal T
    Nano Lett; 2020 Feb; 20(2):1428-1432. PubMed ID: 31928021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions.
    Zhang X; Ezawa M; Zhou Y
    Sci Rep; 2015 Mar; 5():9400. PubMed ID: 25802991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature skyrmion phase in bulk Cu
    Deng L; Wu HC; Litvinchuk AP; Yuan NFQ; Lee JJ; Dahal R; Berger H; Yang HD; Chu CW
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8783-8787. PubMed ID: 32241892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable surface configuration of skyrmion lattices in cubic helimagnets.
    Wan X; Hu Y; Wang B
    J Phys Condens Matter; 2018 Jun; 30(24):245001. PubMed ID: 29726846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic skyrmions in FePt nanoparticles having Reuleaux 3D geometry: a micromagnetic simulation study.
    Stavrou VD; Kourounis D; Dimakopoulos K; Panagiotopoulos I; Gergidis LN
    Nanoscale; 2019 Nov; 11(42):20102-20114. PubMed ID: 31612890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface acoustic wave controlled skyrmion-based synapse devices.
    Chen C; Lin T; Niu J; Sun Y; Yang L; Kang W; Lei N
    Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34852336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design.
    Deng P; Zhuo F; Li H; Cheng Z
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic Direct-Write Skyrmion Nanolithography.
    Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS
    ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skyrmion-Anti-Skyrmion Pair Creation by in-Plane Currents.
    Stier M; Häusler W; Posske T; Gurski G; Thorwart M
    Phys Rev Lett; 2017 Jun; 118(26):267203. PubMed ID: 28707922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the three-dimensional magnetic texture of skyrmion tubes.
    Wolf D; Schneider S; Rößler UK; Kovács A; Schmidt M; Dunin-Borkowski RE; Büchner B; Rellinghaus B; Lubk A
    Nat Nanotechnol; 2022 Mar; 17(3):250-255. PubMed ID: 34931032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Field Magnitudes Needed for Skyrmion Generation in a General Perpendicularly Magnetized Film.
    Yang S; Ju TS; Kim C; Kim HJ; An K; Moon KW; Park S; Hwang C
    Nano Lett; 2022 Nov; 22(21):8430-8436. PubMed ID: 36282733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.