These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31962400)

  • 1. Cooling condition for multilevel quantum absorption refrigerators.
    Friedman HM; Segal D
    Phys Rev E; 2019 Dec; 100(6-1):062112. PubMed ID: 31962400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current fluctuations in quantum absorption refrigerators.
    Segal D
    Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators.
    Liu J; Segal D
    Phys Rev E; 2021 Mar; 103(3-1):032138. PubMed ID: 33862758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z; Holubec V
    Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherence and decoherence in quantum absorption refrigerators.
    Kilgour M; Segal D
    Phys Rev E; 2018 Jul; 98(1-1):012117. PubMed ID: 30110858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum absorption refrigerator with trapped ions.
    Maslennikov G; Ding S; Hablützel R; Gan J; Roulet A; Nimmrichter S; Dai J; Scarani V; Matsukevich D
    Nat Commun; 2019 Jan; 10(1):202. PubMed ID: 30643131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal performance of endoreversible quantum refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum speed limit constraints on a nanoscale autonomous refrigerator.
    Mukhopadhyay C; Misra A; Bhattacharya S; Pati AK
    Phys Rev E; 2018 Jun; 97(6-1):062116. PubMed ID: 30011569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-enhanced absorption refrigerators.
    Correa LA; Palao JP; Alonso D; Adesso G
    Sci Rep; 2014 Feb; 4():3949. PubMed ID: 24492860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong system-bath coupling effects in quantum absorption refrigerators.
    Ivander F; Anto-Sztrikacs N; Segal D
    Phys Rev E; 2022 Mar; 105(3-1):034112. PubMed ID: 35428056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-terminal quantum-dot refrigerators.
    Zhang Y; Lin G; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052118. PubMed ID: 26066130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entanglement enhances cooling in microscopic quantum refrigerators.
    Brunner N; Huber M; Linden N; Popescu S; Silva R; Skrzypczyk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032115. PubMed ID: 24730798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small quantum absorption refrigerator with reversed couplings.
    Silva R; Skrzypczyk P; Brunner N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012136. PubMed ID: 26274153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement.
    Brask JB; Brunner N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062101. PubMed ID: 26764626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooling Cycle Optimization for a Vuilleumier Refrigerator.
    Paul R; Khodja A; Fischer A; Hoffmann KH
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classical emulation of quantum-coherent thermal machines.
    González JO; Palao JP; Alonso D; Correa LA
    Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance bound for quantum absorption refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coefficient of performance under maximum χ criterion in a two-level atomic system as a refrigerator.
    Yuan Y; Wang R; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052151. PubMed ID: 25493783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.