These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31962402)

  • 1. Classical stochastic discrete time crystals.
    Gambetta FM; Carollo F; Lazarides A; Lesanovsky I; Garrahan JP
    Phys Rev E; 2019 Dec; 100(6-1):060105. PubMed ID: 31962402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillations in feedback-driven systems: Thermodynamics and noise.
    De Martino D; Barato AC
    Phys Rev E; 2019 Dec; 100(6-1):062123. PubMed ID: 31962493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete Time Crystal Enabled by Stark Many-Body Localization.
    Liu S; Zhang SX; Hsieh CY; Zhang S; Yao H
    Phys Rev Lett; 2023 Mar; 130(12):120403. PubMed ID: 37027857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium Fixed Points of Coupled Ising Models.
    Young JT; Gorshkov AV; Foss-Feig M; Maghrebi MF
    Phys Rev X; 2020; 10(1):. PubMed ID: 33364075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Time Crystals in Dipolar Systems.
    Ho WW; Choi S; Lukin MD; Abanin DA
    Phys Rev Lett; 2017 Jul; 119(1):010602. PubMed ID: 28731735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics.
    Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tricritical behavior of nonequilibrium Ising spins in fluctuating environments.
    Park JM; Noh JD
    Phys Rev E; 2017 Apr; 95(4-1):042106. PubMed ID: 28505858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolutely Stable Time Crystals at Finite Temperature.
    Machado F; Zhuang Q; Yao NY; Zaletel MP
    Phys Rev Lett; 2023 Nov; 131(18):180402. PubMed ID: 37977624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field.
    Korniss G; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random field disorder at an absorbing state transition in one and two dimensions.
    Barghathi H; Vojta T
    Phys Rev E; 2016 Feb; 93(2):022120. PubMed ID: 26986301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting depinning and nonequilibrium transitions with unsupervised machine learning.
    McDermott D; Reichhardt CJO; Reichhardt C
    Phys Rev E; 2020 Apr; 101(4-1):042101. PubMed ID: 32422707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of a phase transition from a continuous to a discrete time crystal.
    Kongkhambut P; Cosme JG; Skulte J; Moreno Armijos MA; Mathey L; Hemmerich A; Keßler H
    Rep Prog Phys; 2024 Jul; 87(8):. PubMed ID: 39029474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic phase transitions in the presence of quenched randomness.
    Vatansever E; Fytas NG
    Phys Rev E; 2018 Jun; 97(6-1):062146. PubMed ID: 30011603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium antiferromagnetic mixed-spin Ising model.
    Godoy M; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036131. PubMed ID: 12366208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic phase transition of the Blume-Capel model in an oscillating magnetic field.
    Vatansever E; Fytas NG
    Phys Rev E; 2018 Jan; 97(1-1):012122. PubMed ID: 29448362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review.
    Reichhardt C; Olson Reichhardt CJ
    Rep Prog Phys; 2017 Feb; 80(2):026501. PubMed ID: 27997373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ising transition driven by frustration in a 2D classical model with continuous symmetry.
    Weber C; Capriotti L; Misguich G; Becca F; Elhajal M; Mila F
    Phys Rev Lett; 2003 Oct; 91(17):177202. PubMed ID: 14611373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Off-Equilibrium Transition in Systems Slowly Driven across Thermal First-Order Phase Transitions.
    Pelissetto A; Vicari E
    Phys Rev Lett; 2017 Jan; 118(3):030602. PubMed ID: 28157338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical behavior of the mixed-spin Ising model with two competing dynamics.
    Godoy M; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026111. PubMed ID: 11863591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.