These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31962427)

  • 1. Arbitrary Lagrangian-Eulerian-type discrete unified gas kinetic scheme for low-speed continuum and rarefied flow simulations with moving boundaries.
    Wang Y; Zhong C; Liu S
    Phys Rev E; 2019 Dec; 100(6-1):063310. PubMed ID: 31962427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case.
    Guo Z; Xu K; Wang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033305. PubMed ID: 24125383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved discrete unified gas-kinetic scheme with unstructured discrete velocity space.
    Chen J; Liu S; Wang Y; Zhong C
    Phys Rev E; 2019 Oct; 100(4-1):043305. PubMed ID: 31771026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third-order discrete unified gas kinetic scheme for continuum and rarefied flows: Low-speed isothermal case.
    Wu C; Shi B; Shu C; Chen Z
    Phys Rev E; 2018 Feb; 97(2-1):023306. PubMed ID: 29548207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Unified Framework for Modeling Continuum and Rarefied Gas Flows.
    Xiao H; Tang K
    Sci Rep; 2017 Oct; 7(1):13108. PubMed ID: 29026124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete unified gas-kinetic wave-particle method for flows in all flow regimes.
    Yang LM; Li ZH; Shu C; Liu YY; Liu W; Wu J
    Phys Rev E; 2023 Jul; 108(1-2):015302. PubMed ID: 37583183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme.
    Yang L; Yu Y; Yang L; Hou G
    Phys Rev E; 2020 Feb; 101(2-1):023312. PubMed ID: 32168627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-Energy-Based Discrete Unified Gas Kinetic Scheme for van der Waals Fluid.
    Yang Z; Liu S; Zhuo C; Zhong C
    Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme.
    Guo W; Hou G
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules.
    Zhang Y; Zhu L; Wang R; Guo Z
    Phys Rev E; 2018 May; 97(5-1):053306. PubMed ID: 29906980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.
    Su W; Lindsay S; Liu H; Wu L
    Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete unified gas kinetic scheme for electrostatic plasma and its comparison with the particle-in-cell method.
    Liu H; Quan L; Chen Q; Zhou S; Cao Y
    Phys Rev E; 2020 Apr; 101(4-1):043307. PubMed ID: 32422848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation.
    Zhang C; Liang H; Guo Z; Wang LP
    Phys Rev E; 2022 Apr; 105(4-2):045317. PubMed ID: 35590655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows.
    Wang P; Wang LP; Guo Z
    Phys Rev E; 2016 Oct; 94(4-1):043304. PubMed ID: 27841571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows.
    Yang Z; Zhong C; Zhuo C
    Phys Rev E; 2019 Apr; 99(4-1):043302. PubMed ID: 31108650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice-type-dependent momentum-exchange method for moving boundaries.
    Wen B; Li H; Zhang C; Fang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016704. PubMed ID: 22400698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows.
    Liu S; Cao J; Zhong C
    Phys Rev E; 2020 Sep; 102(3-1):033310. PubMed ID: 33075992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.