These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31962463)

  • 1. Enhancing power grid synchronization and stability through time-delayed feedback control.
    Taher H; Olmi S; Schöll E
    Phys Rev E; 2019 Dec; 100(6-1):062306. PubMed ID: 31962463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of synchronization in two-layer power grids.
    Totz CH; Olmi S; Schöll E
    Phys Rev E; 2020 Aug; 102(2-1):022311. PubMed ID: 32942404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and control of power grids with diluted network topology.
    Tumash L; Olmi S; Schöll E
    Chaos; 2019 Dec; 29(12):123105. PubMed ID: 31893638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing synchronization stability of the Kuramoto model in complex networks and power grids.
    Li B; Wong KY
    Phys Rev E; 2017 Jan; 95(1-1):012207. PubMed ID: 28208394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power grid stability under perturbation of single nodes: Effects of heterogeneity and internal nodes.
    Wolff MF; Lind PG; Maass P
    Chaos; 2018 Oct; 28(10):103120. PubMed ID: 30384670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On structural and dynamical factors determining the integrated basin instability of power-grid nodes.
    Kim H; Lee MJ; Lee SH; Son SW
    Chaos; 2019 Oct; 29(10):103132. PubMed ID: 31675814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing synchronization stability in a multi-area power grid.
    Wang B; Suzuki H; Aihara K
    Sci Rep; 2016 May; 6():26596. PubMed ID: 27225708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators.
    Grzybowski JM; Macau EE; Yoneyama T
    Chaos; 2016 Nov; 26(11):113113. PubMed ID: 27908000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.
    Duclut C; Backhaus S; Chertkov M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062802. PubMed ID: 23848724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertia location and slow network modes determine disturbance propagation in large-scale power grids.
    Pagnier L; Jacquod P
    PLoS One; 2019; 14(3):e0213550. PubMed ID: 30897100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From incoherence to synchronicity in the network Kuramoto model.
    Kalloniatis AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066202. PubMed ID: 21230718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging between load-flow and Kuramoto-like power grid models: A flexible approach to integrating electrical storage units.
    Schmietendorf K; Kamps O; Wolff M; Lind PG; Maass P; Peinke J
    Chaos; 2019 Oct; 29(10):103151. PubMed ID: 31675812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power-grid stability predictions using transferable machine learning.
    Yang SG; Kim BJ; Son SW; Kim H
    Chaos; 2021 Dec; 31(12):123127. PubMed ID: 34972349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hysteretic transitions in the Kuramoto model with inertia.
    Olmi S; Navas A; Boccaletti S; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power-Law Distributions of Dynamic Cascade Failures in Power-Grid Models.
    Ódor G; Hartmann B
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycle flows and multistability in oscillatory networks.
    Manik D; Timme M; Witthaut D
    Chaos; 2017 Aug; 27(8):083123. PubMed ID: 28863499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization Transition of the Second-Order Kuramoto Model on Lattices.
    Ódor G; Deng S
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.
    Brede M; Kalloniatis AC
    Phys Rev E; 2016 Jun; 93(6):062315. PubMed ID: 27415288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of wind-power-induced fluctuations in power grids.
    Haehne H; Schmietendorf K; Tamrakar S; Peinke J; Kettemann S
    Phys Rev E; 2019 May; 99(5-1):050301. PubMed ID: 31212474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.