These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3196285)

  • 1. Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins.
    Marcillat O; Zhang Y; Lin SW; Davies KJ
    Biochem J; 1988 Sep; 254(3):677-83. PubMed ID: 3196285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli.
    Davies KJ; Lin SW
    Free Radic Biol Med; 1988; 5(4):225-36. PubMed ID: 3075950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of oxidatively denatured proteins in Escherichia coli.
    Davies KJ; Lin SW
    Free Radic Biol Med; 1988; 5(4):215-23. PubMed ID: 2908182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome.
    Grune T; Reinheckel T; Joshi M; Davies KJ
    J Biol Chem; 1995 Feb; 270(5):2344-51. PubMed ID: 7836468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-stimulated degradation of oxidatively modified superoxide dismutase by cathepsin D in cardiac tissue extracts.
    Strack PR; Waxman L; Fagan JM
    Biochem Biophys Res Commun; 1996 Feb; 219(2):348-53. PubMed ID: 8604990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein.
    Davies KJ; Lin SW; Pacifici RE
    J Biol Chem; 1987 Jul; 262(20):9914-20. PubMed ID: 3036878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide.
    Salo DC; Lin SW; Pacifici RE; Davies KJ
    Free Radic Biol Med; 1988; 5(5-6):335-9. PubMed ID: 2476367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis.
    Davies KJ
    J Free Radic Biol Med; 1986; 2(3):155-73. PubMed ID: 3553299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins.
    Desautels M; Goldberg AL
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1869-73. PubMed ID: 7043466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced creatine-stimulated respiration in doxorubicin challenged mitochondria: particular sensitivity of the heart.
    Tokarska-Schlattner M; Dolder M; Gerber I; Speer O; Wallimann T; Schlattner U
    Biochim Biophys Acta; 2007 Nov; 1767(11):1276-84. PubMed ID: 17935690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of ubiquinone on the inhibitory effect of adriamycin on mitochondrial oxidative phosphorylation.
    Muhammed H; Kurup CK
    Biochem J; 1984 Jan; 217(2):493-8. PubMed ID: 6696744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome.
    Giulivi C; Pacifici RE; Davies KJ
    Arch Biochem Biophys; 1994 Jun; 311(2):329-41. PubMed ID: 8203895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linking of mitochondrial matrix proteins in situ.
    D'Souza SF; Srere PA
    Biochim Biophys Acta; 1983 Jul; 724(1):40-51. PubMed ID: 6409145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells.
    Davies KJ; Goldberg AL
    J Biol Chem; 1987 Jun; 262(17):8227-34. PubMed ID: 3597373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism.
    Bota DA; Davies KJ
    Nat Cell Biol; 2002 Sep; 4(9):674-80. PubMed ID: 12198491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent proteolysis in yeast mitochondria.
    Yasuhara T; Mera Y; Nakai T; Ohashi A
    J Biochem; 1994 Jun; 115(6):1166-71. PubMed ID: 7982899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Induction of a menadione-dependent respiratory shunt by a platinum complex].
    Kolesova GM; Raĭkhman LM; Zakharova IA; Moshkovskiĭ IuSh
    Biull Eksp Biol Med; 1978 Aug; 86(8):164-7. PubMed ID: 210861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by nilutamide of the mitochondrial respiratory chain and ATP formation. Possible contribution to the adverse effects of this antiandrogen.
    Berson A; Schmets L; Fisch C; Fau D; Wolf C; Fromenty B; Deschamps D; Pessayre D
    J Pharmacol Exp Ther; 1994 Jul; 270(1):167-76. PubMed ID: 8035313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein damage and degradation by oxygen radicals. I. general aspects.
    Davies KJ
    J Biol Chem; 1987 Jul; 262(20):9895-901. PubMed ID: 3036875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of tertiary amine N-oxides by rat liver mitochondria.
    Sugiura M; Kato R
    J Pharmacol Exp Ther; 1977 Jan; 200(1):25-32. PubMed ID: 13201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.