BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3196307)

  • 1. Enhanced thermodynamic stability of beta-lactoglobulin at low pH. A possible mechanism.
    Kella NK; Kinsella JE
    Biochem J; 1988 Oct; 255(1):113-8. PubMed ID: 3196307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into impact of choline-based ionic liquids on bovine β-lactoglobulin structural analysis: Unexpected high thermal stability of protein.
    Sindhu A; Mogha NK; Venkatesu P
    Int J Biol Macromol; 2019 Apr; 126():1-10. PubMed ID: 30576736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary zone electrophoresis with optimized temperature control for studying thermal denaturation of proteins at various pH.
    Rochu D; Ducret G; Ribes F; Vanin S; Masson P
    Electrophoresis; 1999 Jun; 20(7):1586-94. PubMed ID: 10424484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unfolding and refolding of bovine beta-lactoglobulin monitored by hydrogen exchange measurements.
    Ragona L; Fogolari F; Romagnoli S; Zetta L; Maubois JL; Molinari H
    J Mol Biol; 1999 Nov; 293(4):953-69. PubMed ID: 10543977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic stability of porcine beta-lactoglobulin. A structural relevance.
    Burova TV; Grinberg NV; Visschers RW; Grinberg VY; De Kruif CG
    Eur J Biochem; 2002 Aug; 269(16):3958-68. PubMed ID: 12180972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of calcium on β-lactoglobulin denaturation kinetics: Implications in unfolding and aggregation mechanisms.
    Petit J; Herbig AL; Moreau A; Delaplace G
    J Dairy Sci; 2011 Dec; 94(12):5794-810. PubMed ID: 22118070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure denaturation of beta-lactoglobulin. Different stabilities of isoforms A and B, and an investigation of the Tanford transition.
    Botelho MM; Valente-Mesquita VL; Oliveira KM; Polikarpov I; Ferreira ST
    Eur J Biochem; 2000 Apr; 267(8):2235-41. PubMed ID: 10759846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A differential scanning calorimetric study of the thermal denaturation of bovine beta-lactoglobulin. Thermal behaviour at temperatures up to 100 degrees C.
    de Wit JN; Swinkels GA
    Biochim Biophys Acta; 1980 Jul; 624(1):40-50. PubMed ID: 7407243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of free Cys121 in stabilization of bovine beta-lactoglobulin B.
    Burova TV; Choiset Y; Tran V; Haertlé T
    Protein Eng; 1998 Nov; 11(11):1065-73. PubMed ID: 9876928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation.
    Swint L; Robertson AD
    Protein Sci; 1993 Dec; 2(12):2037-49. PubMed ID: 8298454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of stabilizers and denaturants on the cold denaturation temperatures of proteins and implications for freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1167-75. PubMed ID: 16028018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH dependence thermal stability of a chymotrypsin inhibitor from Schizolobium parahyba seeds.
    Teles RC; Calderon Lde A; Medrano FJ; Barbosa JA; Guimarães BG; Santoro MM; de Freitas SM
    Biophys J; 2005 May; 88(5):3509-17. PubMed ID: 15764660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and thermodynamic evidence for a complex denaturation mechanism of bovine beta-lactoglobulin A.
    García-Hernández E; Hernández-Arana A; Zubillaga RA; Rojo-Domínguez A
    Biochem Mol Biol Int; 1998 Jul; 45(4):761-8. PubMed ID: 9713699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced subunit dissociation and unfolding of dimeric beta-lactoglobulin.
    Valente-Mesquita VL; Botelho MM; Ferreira ST
    Biophys J; 1998 Jul; 75(1):471-6. PubMed ID: 9649408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic stability and point mutations of bacteriophage T4 lysozyme.
    Hawkes R; Grutter MG; Schellman J
    J Mol Biol; 1984 May; 175(2):195-212. PubMed ID: 6726809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric and circular dichroic studies of the thermal denaturation of beta-lactoglobulin.
    Lapanje S; Poklar N
    Biophys Chem; 1989 Oct; 34(2):155-62. PubMed ID: 2624879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thermodynamics of protein folding: a critique of widely used quasi-thermodynamic interpretations and a restatement based on the Gibbs-Duhem relation and consistent with the Phase Rule.
    Pethica BA
    Phys Chem Chem Phys; 2010 Jul; 12(27):7445-56. PubMed ID: 20480070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and kinetic stability of penicillin acylase from Escherichia coli.
    Grinberg VY; Burova TV; Grinberg NV; Shcherbakova TA; Guranda DT; Chilov GG; Svedas VK
    Biochim Biophys Acta; 2008 May; 1784(5):736-46. PubMed ID: 18314015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring conformational stability of proteins using an optimized temperature-controlled capillary electrophoresis approach.
    Rochu D; Ducret G; Masson P
    J Chromatogr A; 1999 Apr; 838(1-2):157-65. PubMed ID: 10327636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.