These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3196331)

  • 1. Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes.
    Murata K; Higaki N; Kimura A
    Biochem Biophys Res Commun; 1988 Nov; 157(1):190-5. PubMed ID: 3196331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microbial carbon-phosphorus bond cleavage enzyme requires two protein components for activity.
    Murata K; Higaki N; Kimura A
    J Bacteriol; 1989 Aug; 171(8):4504-6. PubMed ID: 2753863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-phosphorus bond cleavage activity in cell-free extracts of Enterobacter aerogenes ATCC 15038 and Pseudomonas sp. 4ASW.
    McMullan G; Watkins R; Harper DB; Quinn JP
    Biochem Int; 1991 Sep; 25(2):271-9. PubMed ID: 1789794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Microbial carbon-phosphorus bond degrading enzymes].
    Murata K
    Seikagaku; 1992 Feb; 64(2):100-5. PubMed ID: 1593181
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15.
    Klimek-Ochab M
    Folia Microbiol (Praha); 2014 Sep; 59(5):375-80. PubMed ID: 24570323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes.
    Lee KS; Metcalf WW; Wanner BL
    J Bacteriol; 1992 Apr; 174(8):2501-10. PubMed ID: 1556070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of p-aminobenzoic acid from chorismic rather than iso-chorismic acid in Enterobacter aerogenes and Streptomyces species.
    Johanni M; Hofmann P; Leistner E
    Arch Biochem Biophys; 1989 Jun; 271(2):495-501. PubMed ID: 2786373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12.
    Wackett LP; Wanner BL; Venditti CP; Walsh CT
    J Bacteriol; 1987 Apr; 169(4):1753-6. PubMed ID: 3549702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of a novel carbon-phosphorus bond cleavage activity in cell-free extracts of an environmental Pseudomonas fluorescens isolate.
    McMullan G; Quinn JP
    Biochem Biophys Res Commun; 1992 Apr; 184(2):1022-7. PubMed ID: 1575721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-dependent inactivation of citrate lyase in Enterobacter aerogenes.
    Kulla H; Gottschalk G
    J Bacteriol; 1977 Dec; 132(3):764-70. PubMed ID: 924971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.
    Krzyśko-Lupicka T; Strof W; Kubś K; Skorupa M; Wieczorek P; Lejczak B; Kafarski P
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):549-52. PubMed ID: 9390463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source.
    Klimek-Ochab M; Lejczak B; Forlani G
    FEMS Microbiol Lett; 2003 May; 222(2):205-9. PubMed ID: 12770709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent substrate for carbon-phosphorus lyase: towards the pathway for organophosphonate metabolism in bacteria.
    He SM; Luo Y; Hove-Jensen B; Zechel DL
    Bioorg Med Chem Lett; 2009 Oct; 19(20):5954-7. PubMed ID: 19733071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23F.
    McMullan G; Quinn JP
    J Bacteriol; 1994 Jan; 176(2):320-4. PubMed ID: 8288524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
    Ulrich EC; Kamat SS; Hove-Jensen B; Zechel DL
    Methods Enzymol; 2018; 605():351-426. PubMed ID: 29909833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1.
    Kertesz M; Elgorriaga A; Amrhein N
    Biodegradation; 1991; 2(1):53-9. PubMed ID: 1368477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the biosynthesis of bialaphos (SF-1293). 4. Production of phosphonic acid derivatives, 2-hydroxyethylphosphonic acid, hydroxymethylphosphonic acid and phosphonoformic acid by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos.
    Imai S; Seto H; Sasaki T; Tsuruoka T; Ogawa H; Satoh A; Inouye S; Niida T; Otake N
    J Antibiot (Tokyo); 1984 Nov; 37(11):1505-8. PubMed ID: 6239850
    [No Abstract]   [Full Text] [Related]  

  • 20. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway.
    Drzyzga D; Forlani G; Vermander J; Kafarski P; Lipok J
    Environ Microbiol; 2017 Mar; 19(3):1065-1076. PubMed ID: 27907245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.