These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31963414)
21. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Johansson A; Faber F; Kniebühler G; Stepp H; Sroka R; Egensperger R; Beyer W; Kreth FW Lasers Surg Med; 2013 Apr; 45(4):225-34. PubMed ID: 23533060 [TBL] [Abstract][Full Text] [Related]
22. Red-light excitation of protoporphyrin IX fluorescence for subsurface tumor detection. Roberts DW; Olson JD; Evans LT; Kolste KK; Kanick SC; Fan X; Bravo JJ; Wilson BC; Leblond F; Marois M; Paulsen KD J Neurosurg; 2018 Jun; 128(6):1690-1697. PubMed ID: 28777025 [TBL] [Abstract][Full Text] [Related]
23. 5-Aminolevulinic acid (ALA)-induced protoporphyrin IX fluorescence and photodynamic effects in the rat bladder: an in vivo study comparing oral and intravesical ALA administration. Chang SC; Buonaccorsi G; MacRobert AJ; Bown SG Lasers Surg Med; 1997; 20(3):254-64. PubMed ID: 9138254 [TBL] [Abstract][Full Text] [Related]
24. Photodynamic therapy using 5-aminolevulinic acid triggered DNA damage of adenocarcinoma breast cancer and hepatocellular carcinoma cell lines. Abo-Zeid MAM; Abo-Elfadl MT; Mostafa SM Photodiagnosis Photodyn Ther; 2018 Mar; 21():351-356. PubMed ID: 29355735 [TBL] [Abstract][Full Text] [Related]
25. Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Tetard MC; Vermandel M; Mordon S; Lejeune JP; Reyns N Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):319-30. PubMed ID: 24905843 [TBL] [Abstract][Full Text] [Related]
26. Lack of selectivity of protoporphyrin IX fluorescence for basal cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic treatment. Martin A; Tope WD; Grevelink JM; Starr JC; Fewkes JL; Flotte TJ; Deutsch TF; Anderson RR Arch Dermatol Res; 1995; 287(7):665-74. PubMed ID: 8534131 [TBL] [Abstract][Full Text] [Related]
27. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. Namikawa T; Yatabe T; Inoue K; Shuin T; Hanazaki K World J Gastroenterol; 2015 Aug; 21(29):8769-75. PubMed ID: 26269666 [TBL] [Abstract][Full Text] [Related]
28. ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. Stepp H; Beck T; Pongratz T; Meinel T; Kreth FW; Tonn JCh; Stummer W J Environ Pathol Toxicol Oncol; 2007; 26(2):157-64. PubMed ID: 17725542 [TBL] [Abstract][Full Text] [Related]
30. Increased expression of ABCB6 enhances protoporphyrin IX accumulation and photodynamic effect in human glioma. Zhao SG; Chen XF; Wang LG; Yang G; Han DY; Teng L; Yang MC; Wang DY; Shi C; Liu YH; Zheng BJ; Shi CB; Gao X; Rainov NG Ann Surg Oncol; 2013 Dec; 20(13):4379-88. PubMed ID: 22688660 [TBL] [Abstract][Full Text] [Related]
31. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions. Blake E; Allen J; Curnow A Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):575-82. PubMed ID: 24284114 [TBL] [Abstract][Full Text] [Related]
32. 5-ALA in the management of malignant glioma. Stepp H; Stummer W Lasers Surg Med; 2018 Jul; 50(5):399-419. PubMed ID: 29737540 [TBL] [Abstract][Full Text] [Related]
33. Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester. Wu SM; Ren QG; Zhou MO; Peng Q; Chen JY Cancer Lett; 2003 Oct; 200(2):123-31. PubMed ID: 14568165 [TBL] [Abstract][Full Text] [Related]
34. Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid-induced protoporphyrin IX for high-grade gliomas. Yamamoto J; Kakeda S; Yoneda T; Ogura SI; Shimajiri S; Tanaka T; Korogi Y; Nishizawa S Oncol Lett; 2017 Mar; 13(3):1269-1275. PubMed ID: 28454245 [TBL] [Abstract][Full Text] [Related]
35. Clearance mechanism of protoporphyrin IX from mouse skin after application of 5-aminolevulinic acid. Juzeniene A; Iani V; Moan J Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):538-45. PubMed ID: 24284108 [TBL] [Abstract][Full Text] [Related]
36. Her2 oncogene transformation enhances 5-aminolevulinic acid-mediated protoporphyrin IX production and photodynamic therapy response. Yang X; Palasuberniam P; Myers KA; Wang C; Chen B Oncotarget; 2016 Sep; 7(36):57798-57810. PubMed ID: 27527860 [TBL] [Abstract][Full Text] [Related]
37. Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. Schipmann S; Müther M; Stögbauer L; Zimmer S; Brokinkel B; Holling M; Grauer O; Suero Molina E; Warneke N; Stummer W J Neurosurg; 2021 Feb; 134(2):426-436. PubMed ID: 31978877 [TBL] [Abstract][Full Text] [Related]
39. Relationship of protoporphyrin IX synthesis to photodynamic effects by 5-aminolaevulinic acid and its esters on various cell lines derived from the skin. Lee JB; Choi JY; Chun JS; Yun SJ; Lee SC; Oh J; Park HR Br J Dermatol; 2008 Jul; 159(1):61-7. PubMed ID: 18489589 [TBL] [Abstract][Full Text] [Related]
40. Effects of Silencing Heme Biosynthesis Enzymes on 5-Aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence and Photodynamic Therapy. Yang X; Li W; Palasuberniam P; Myers KA; Wang C; Chen B Photochem Photobiol; 2015; 91(4):923-30. PubMed ID: 25809721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]