These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 31963451)
1. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
2. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
3. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
4. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
5. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818 [TBL] [Abstract][Full Text] [Related]
6. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129 [TBL] [Abstract][Full Text] [Related]
7. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea. Zhang W; Cao Y; Li H; Rasmey AM; Zhang K; Shi L; Ge B Appl Microbiol Biotechnol; 2024 Jun; 108(1):398. PubMed ID: 38940906 [TBL] [Abstract][Full Text] [Related]
8. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Yang Q; Chen Y; Ma Z Fungal Genet Biol; 2013 Jan; 50():63-71. PubMed ID: 23147398 [TBL] [Abstract][Full Text] [Related]
9. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea. Liu N; Ren W; Li F; Chen C; Ma Z Curr Genet; 2019 Feb; 65(1):293-300. PubMed ID: 30167777 [TBL] [Abstract][Full Text] [Related]
11. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948 [TBL] [Abstract][Full Text] [Related]
12. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea. Ren W; Zhang Z; Shao W; Yang Y; Zhou M; Chen C Mol Plant Pathol; 2017 Feb; 18(2):238-248. PubMed ID: 26972592 [TBL] [Abstract][Full Text] [Related]
13. A Single Nucleotide Mutation in Adenylate Cyclase Affects Vegetative Growth, Sclerotial Formation and Virulence of Chen X; Zhang X; Zhu P; Wang Y; Na Y; Guo H; Cai Y; Nie H; Jiang Y; Xu L Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326350 [No Abstract] [Full Text] [Related]
14. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related]
15. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Zhang Z; Qin G; Li B; Tian S Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899 [TBL] [Abstract][Full Text] [Related]
16. The Gβ-like protein Bcgbl1 regulates development and pathogenicity of the gray mold Botrytis cinerea via modulating two MAP kinase signaling pathways. Tang J; Sui Z; Li R; Xu Y; Xiang L; Fu S; Wei J; Cai X; Wu M; Zhang J; Chen W; Wei Y; Li G; Yang L PLoS Pathog; 2023 Dec; 19(12):e1011839. PubMed ID: 38048363 [TBL] [Abstract][Full Text] [Related]
17. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
18. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. van Esse HP; Van't Klooster JW; Bolton MD; Yadeta KA; van Baarlen P; Boeren S; Vervoort J; de Wit PJ; Thomma BP Plant Cell; 2008 Jul; 20(7):1948-63. PubMed ID: 18660430 [TBL] [Abstract][Full Text] [Related]
19. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related]
20. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. Hou J; Feng HQ; Chang HW; Liu Y; Li GH; Yang S; Sun CH; Zhang MZ; Yuan Y; Sun J; Zhu-Salzman K; Zhang H; Qin QM New Phytol; 2020 Jan; 225(2):930-947. PubMed ID: 31529514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]