These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31963607)

  • 1. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids.
    Rosli NAH; Loh KS; Wong WY; Yunus RM; Lee TK; Ahmad A; Chong ST
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs).
    Ebrahimi M; Kujawski W; Fatyeyeva K; Kujawa J
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.
    Fernicola A; Panero S; Scrosati B; Tamada M; Ohno H
    Chemphyschem; 2007 May; 8(7):1103-7. PubMed ID: 17393375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies-A Review.
    Gagliardi GG; Ibrahim A; Borello D; El-Kharouf A
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32276482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions.
    Kim SY; Kim S; Park MJ
    Nat Commun; 2010 Oct; 1():88. PubMed ID: 20981017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imparting High Proton Conductivity to Nafion® Tuned by Acidic Chitosan for Low-Temperature Proton Exchange Membrane Fuel Cell Applications.
    Kim H; Kabir MDL; Choi SJ
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6625-6629. PubMed ID: 31027001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of highly decoupled conductivity in protic ionic conductors.
    Wojnarowska Z; Wang Y; Paluch KJ; Sokolov AP; Paluch M
    Phys Chem Chem Phys; 2014 May; 16(19):9123-7. PubMed ID: 24699717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton Conducting Membranes Based on Poly(Ionic Liquids) Having Phosphonium Counter-Cations.
    Isik M; Porcarelli L; Lago N; Zhu H; Forsyth M; Mecerreyes D
    Macromol Rapid Commun; 2018 Feb; 39(3):. PubMed ID: 29205639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: chitosan-based biopolymers for anion-exchange membrane fuel cell application.
    Myrzakhmetov B; Akhmetova A; Bissenbay A; Karibayev M; Pan X; Wang Y; Bakenov Z; Mentbayeva A
    R Soc Open Sci; 2023 Nov; 10(11):230843. PubMed ID: 38026010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical properties of proton conducting membranes based on a protic ionic liquid.
    Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Panero S; Scrosati B; Ohno H
    J Phys Chem B; 2007 Nov; 111(43):12462-7. PubMed ID: 17927237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.
    Liu H; Gong C; Wang J; Liu X; Liu H; Cheng F; Wang G; Zheng G; Qin C; Wen S
    Carbohydr Polym; 2016 Jan; 136():1379-85. PubMed ID: 26572483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation.
    Holder SL; Lee CH; Popuri SR; Zhuang MX
    Carbohydr Polym; 2016 Sep; 149():251-62. PubMed ID: 27261749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan biopolymer for fuel cell applications.
    Ma J; Sahai Y
    Carbohydr Polym; 2013 Feb; 92(2):955-75. PubMed ID: 23399116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymerized Paired Ions as Polymeric Ionic Liquid-Proton Conductivity.
    Gu H; Yan F; Texter J
    Macromol Rapid Commun; 2016 Jul; 37(14):1218-25. PubMed ID: 27325177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Sulfonated Chitosan/Polyvinylidene Fluoride-Based Proton Exchange Membrane with fSiO
    Palanisamy G; Muhammed AP; Thangarasu S; Oh TH
    Membranes (Basel); 2023 Aug; 13(9):. PubMed ID: 37755180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Elastic, Healable, and Durable Anhydrous High-Temperature Proton Exchange Membranes Cross-Linked with Highly Dense Hydrogen Bonds.
    Wang W; Tai G; Li Y; Sun J
    Macromol Rapid Commun; 2023 Apr; 44(8):e2300007. PubMed ID: 36794467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells.
    Alashkar A; Al-Othman A; Tawalbeh M; Qasim M
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.
    Xiao Y; Xiang Y; Xiu R; Lu S
    Carbohydr Polym; 2013 Oct; 98(1):233-40. PubMed ID: 23987340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of proton-exchange membrane fuel cell with ionic liquid technology.
    Khoo KS; Chia WY; Wang K; Chang CK; Leong HY; Maaris MNB; Show PL
    Sci Total Environ; 2021 Nov; 793():148705. PubMed ID: 34328982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the use of cellulose-based proton exchange membranes in fuel cell technology: A review.
    Chibac-Scutaru AL; Coseri S
    Int J Biol Macromol; 2023 Aug; 247():125810. PubMed ID: 37453630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.