BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31963710)

  • 1. Novel Approaches for Identifying the Molecular Background of Schizophrenia.
    Golov AK; Kondratyev NV; Kostyuk GP; Golimbet AVE
    Cells; 2020 Jan; 9(1):. PubMed ID: 31963710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.
    Rudan I
    Psychiatr Danub; 2010 Jun; 22(2):190-2. PubMed ID: 20562745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling.
    Schijven D; Kofink D; Tragante V; Verkerke M; Pulit SL; Kahn RS; Veldink JH; Vinkers CH; Boks MP; Luykx JJ
    Schizophr Res; 2018 Sep; 199():195-202. PubMed ID: 29653892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of schizophrenia heritability in both neuronal and glia cell regulatory elements.
    Tansey KE; Hill MJ
    Transl Psychiatry; 2018 Jan; 8(1):7. PubMed ID: 29317610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia.
    Hall LS; Medway CW; Pain O; Pardiñas AF; Rees EG; Escott-Price V; Pocklington A; Bray NJ; Holmans PA; Walters JTR; Owen MJ; O'Donovan MC
    Hum Mol Genet; 2020 Jan; 29(1):159-167. PubMed ID: 31691811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation.
    Rao S; Yao Y; Bauer DE
    Genome Med; 2021 Mar; 13(1):41. PubMed ID: 33691767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations.
    Lamontagne M; Bérubé JC; Obeidat M; Cho MH; Hobbs BD; Sakornsakolpat P; de Jong K; Boezen HM; ; Nickle D; Hao K; Timens W; van den Berge M; Joubert P; Laviolette M; Sin DD; Paré PD; Bossé Y
    Hum Mol Genet; 2018 May; 27(10):1819-1829. PubMed ID: 29547942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Results and promises of genetics of cognitive impairment in schizophrenia: molecular-genetic approaches].
    Alfimova MV; Kondratiev NV; Golimbet VE
    Zh Nevrol Psikhiatr Im S S Korsakova; 2016; 116(11):137-144. PubMed ID: 28635752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic architecture of schizophrenia: a review of major advancements.
    Legge SE; Santoro ML; Periyasamy S; Okewole A; Arsalan A; Kowalec K
    Psychol Med; 2021 Oct; 51(13):2168-2177. PubMed ID: 33550997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS.
    Gagliano SA; Ptak C; Mak DYF; Shamsi M; Oh G; Knight J; Boutros PC; Petronis A
    Am J Hum Genet; 2016 May; 98(5):956-962. PubMed ID: 27087318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the epigenetic toolbox
to contextualize common variants associated with schizophrenia risk
.
    Rajarajan P; Akbarian S
    Dialogues Clin Neurosci; 2019 Dec; 21(4):407-416. PubMed ID: 31949408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the genetic liability to schizophrenia through the neuroepigenome.
    Fullard JF; Halene TB; Giambartolomei C; Haroutunian V; Akbarian S; Roussos P
    Schizophr Res; 2016 Nov; 177(1-3):115-124. PubMed ID: 26827128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine mapping with epigenetic information and 3D structure.
    Orozco G
    Semin Immunopathol; 2022 Jan; 44(1):115-125. PubMed ID: 35022890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics of Schizophrenia: Ready to Translate?
    Foley C; Corvin A; Nakagome S
    Curr Psychiatry Rep; 2017 Sep; 19(9):61. PubMed ID: 28741255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk genes for schizophrenia: translational opportunities for drug discovery.
    Winchester CL; Pratt JA; Morris BJ
    Pharmacol Ther; 2014 Jul; 143(1):34-50. PubMed ID: 24561132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Post-GWAS Analysis Sheds New Light on the Disease Mechanisms of Schizophrenia.
    Lin JR; Cai Y; Zhang Q; Zhang W; Nogales-Cadenas R; Zhang ZD
    Genetics; 2016 Dec; 204(4):1587-1600. PubMed ID: 27754856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach.
    Ruderfer DM; Charney AW; Readhead B; Kidd BA; Kähler AK; Kenny PJ; Keiser MJ; Moran JL; Hultman CM; Scott SA; Sullivan PF; Purcell SM; Dudley JT; Sklar P
    Lancet Psychiatry; 2016 Apr; 3(4):350-7. PubMed ID: 26915512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging genetics of schizophrenia in the post-GWAS era.
    Arslan A
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jan; 80(Pt B):155-165. PubMed ID: 28645536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing.
    Duan J
    Neurosci Bull; 2015 Feb; 31(1):113-27. PubMed ID: 25575480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations.
    Walsh AM; Whitaker JW; Huang CC; Cherkas Y; Lamberth SL; Brodmerkel C; Curran ME; Dobrin R
    Genome Biol; 2016 Apr; 17():79. PubMed ID: 27140173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.